Math, asked by jaysukhdabhi86, 3 months ago

800(0.1)^5/2(√2-1) how to solve​

Answers

Answered by venkatakrishnan70
0

Step-by-step explanation:

The value of 800 × 0.1^\dfrac{5}{2}0.1

2

5

= \dfrac{800}{\sqrt{10} }

10

800

Step-by-step explanation:

We have,

800 × 0.1^\dfrac{5}{2}0.1

2

5

To find, the value of 800 × 0.1^\dfrac{5}{2}0.1

2

5

= ?

∴ 800 × 0.1^\dfrac{5}{2}0.1

2

5

= 800 × (\dfrac{1}{10} )^\dfrac{5}{2}(

10

1

)

2

5

Using the exponential identity,

(\dfrac{a}{b})^m=\dfrac{a^m}{b^m}(

b

a

)

m

=

b

m

a

m

= 800 × (\dfrac{1^{\dfrac{5}{2}}}{10^{\dfrac{5}{2}}} )(

10

2

5

1

2

5

)

= 800 × \dfrac{1}{100\times 10^\dfrac{1}{2}}}

= 800 × \dfrac{1}{10^{\dfrac{1}{2} }}

10

2

1

1

= \dfrac{800}{\sqrt{10} }

10

800

∴ The value of 800 × 0.1^\dfrac{5}{2}0.1

2

5

= \dfrac{800}{\sqrt{10} }

10

800

Thus, the value of 800 × 0.1^\dfrac{5}{2}0.1

2

5

is equal to \dfrac{800}{\sqrt{10} }

10

800

,

Similar questions