Math, asked by dycool, 1 year ago

81^(1/log 3 base 5)+27^log36base9+3^4/log 9 base 7 is equal to​

Answers

Answered by ashutosharyan874
31

Here's your solution buddy

Attachments:

dycool: solved perfectly
ashutosharyan874: if u didn't get that I can edit the ans,, do I edit
dycool: i didn't understand the solving of last term
ashutosharyan874: I will edit it then wait
dycool: hey it's OK i understood it
ashutosharyan874: check it out plz.
dycool: thx
Answered by aliyasubeer
1

Answer:

81^(1/log 3 base 5)+27^log36base9+3^4/log 9 base 7 is equal to ​841+\sqrt{7}$$.

Step-by-step explanation:

  • GIVEN:

$$81^{\frac{1}{\log _{5} 3}}+27^{\log _{9} 36}+3^{\frac{1}{\log _{7} 9}}

\frac{1}{\log _{5} 3}=\log _{3}(5)$$

So:\\81^{\frac{1}{\log _{5} 3}}=\left(3^{4}\right)^{\log _{3}(5)}\\=3^{4 \log _{3}(5)}\\=\left(3^{\log _{3}(5)}\right)^{4}\\=5^{4}\\=625\log _{9} 36\\=\frac{\log _{3}(36)}{\log _{3}(9)}\\=\frac{\log _{3}(36)}{\log _{3}\left(3^{2}\right)}\\=\frac{\log _{3}(36)}{2}$$.......................................................(1)

$$27^{\log _{9} 36}=\left(3^{3}\right)^{\frac{\log _{3}(36)}{2}}\\=\left(3^{\log _{3}(36)}\right)^{\frac{3}{2}}\\=36^{\frac{3}{2}}\\=\left(6^{2}\right)^{\frac{3}{2}}\\=6^{3}\\=216..............................................................(2)\\\\\frac{1}{\log _{7} 9}\\=\log _{9}(7)=\frac{\log _{3}(7)}{2}\\\\So\\\\3^{\frac{1}{\log _{7} 9}}\\=3^{\frac{\log _{3}(7)}{2}}\\=\left(3^{\log _{3}(7)}\right)^{\frac{1}{2}}\\=7^{\frac{1}{2}}=\sqrt{7}$$..........................................................(3)

Putting this all together:

$$81^{\frac{1}{\log _{5} 3}}+27^{\log _{9} 36}+3^{\frac{1}{\log _{7} 9}}=625+216+\sqrt{7}=841+\sqrt{7}$$

Similar questions