Math, asked by aradhya37, 1 year ago

in bracket X upon 2 minus 2 by 5 bracket close and other bracket 2 by 5 minus x by 2 bracket close minus x square + 2x simplify it by by finding its product
(x \div 2 - 2 \div 5)(2 \div 5 - x \div 2)  -  {x}^{2}  + 2x

Answers

Answered by mysticd
35

Answer:

 \red {\left( \frac{x}{2} - \frac{2}{5}\right) \left( \frac{2}{5} - \frac{x}{2}\right) -x^{2}+2x}

 \green {= \frac{16-125x^{2}+200x}{100}}

Step-by-step explanation:

 \red {\left( \frac{x}{2} - \frac{2}{5}\right) \left( \frac{2}{5} - \frac{x}{2}\right) -x^{2}+2x}

 = \left( \frac{x}{2} - \frac{2}{5}\right)[- \left( \frac{x}{2} - \frac{2}{5}\right)] - x^{2}+2x

 =-[\left( \frac{x}{2}\right)^{2} - \left(\frac{2}{5}\right)^{2}]-x^{2}+2x

 = -[\frac{x^{2}}{4} - \frac{4}{25}]-x^{2}+2x

=  -\frac{x^{2}}{4} + \frac{4}{25}-x^{2}+2x

 = \frac{ -25x^{2}+16-100x^{2}+200x}{100}

 = \frac{16-125x^{2}+200x}{100}

Therefore.,

 \red {\left( \frac{x}{2} - \frac{2}{5}\right) \left( \frac{2}{5} - \frac{x}{2}\right) -x^{2}+2x}

 \green {= \frac{16-125x^{2}+200x}{100}}

•••♪

Answered by thestarno1
2

:

 \frac{16 - 125 ^ 2+ 200x}{100}

Similar questions