82. The difference between outside and inside surface of a cylindrical metallic pipe 14 cm long is 44 sq cm. If the pipe is made of 99 cu cm of metal, find the outer and inner radii of the pipe
Answers
Answer:
Let, external radius = R cm and internal radius =r cm.
Then, outside surface
\red{ \tt=2 \pi R h=\left(2 \times \cfrac{22}{7} \times R \times 14\right) cm ^{2}=(88 \: \: R ) cm ^{2} . }=2πRh=(2×722×R×14)cm2=(88R)cm2.
Inside surface
\blue{\tt =2 \pi r h=\left(2 \times \dfrac{22}{7} \times r \times 14\right) cm ^{3}=(88 \: \: r) cm ^{2} }=2πrh=(2×722×r×14)cm3=(88r)cm2
\tt \therefore(88 R-88 r)=44∴(88R−88r)=44
\tt \: \: \: \Rightarrow(R-r)=\dfrac{44}{88}⇒(R−r)=8844
\begin{gathered} \\ \tt \Rightarrow(R-r)=\frac{1}{2} \qquad \ldots \ldots\ldots (i)\end{gathered}⇒(R−r)=21………(i)
External volume
\pink{ \tt=\pi R ^{2} h=\left(\dfrac{22}{7} \times R ^{2} \times 14\right) cm ^{3}=\left(44 \: \: R ^{2}\right) cm ^{3} .}=πR2h=(722×R2×14)cm3=(44R2)cm3.
Internal volume
\orange{\tt =\pi r^{2} h=\left(\dfrac{22}{7} \times r^{2} \times 14\right) cm ^{3}=\left(44 \: \: r^{2}\right) cm ^{3} . }=πr2h=(722×r2×14)cm3=(44r2)cm3.
\tt \therefore\left(44 R ^{2}-44 r^{2}\right)=99∴(44R2−44r2)=99
\tt\Rightarrow\left( R ^{2}-r^{2}\right)=\dfrac{99}{44}⇒(R2−r2)=4499
\tt\Rightarrow\left( R ^{2}-r^{2}\right)=\dfrac{9}{4} \: \: \: \: \: \: \: \: \: \: ...(ii)⇒(R2−r2)=49...(ii)
On dividing (ii) by (i), we get:
\tt ( R +r)=\left(\dfrac{9}{4} \times \dfrac{2}{1}\right)(R+r)=(49×12)
\tt\Rightarrow( R +r)=\dfrac{9}{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: ...(iii)⇒(R+r)=29...(iii)
Solving (i) and (iii) , we get, R =2.5 and r=2 .