Math, asked by saichavan, 5 days ago


 \displaystyle \sf \int \arccos \: x \: dx
No spam.
Quality answer.​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \sf \int arc \: cosx \: dx \\

can be rewritten as

\rm \: =  \:\displaystyle \sf \int  {cos}^{ - 1}x \: dx \:

can be further rewritten as

\rm \: =  \:\displaystyle \sf \int 1. \:  {cos}^{ - 1}x \: dx \:

Using integration by parts, we get

\rm \: =  \: {cos}^{ - 1}x\displaystyle \sf \int 1 \: dx \:  -  \: \displaystyle \sf \int \bigg[\dfrac{d}{dx}{cos}^{ - 1}x\displaystyle \sf \int 1 \: dx \bigg]dx \:  \\

\rm \: =  \:{cos}^{ - 1}x \: (x)  -  \displaystyle \sf \int  \frac{ - 1}{ \sqrt{1 -  {x}^{2} } } \: (x) \: dx \\

can be further rewritten as

\rm \: =  \:x \: {cos}^{ - 1}x \:  -  \displaystyle \sf \int  \frac{ - x}{ \sqrt{1 -  {x}^{2} } } \: dx \\

Now, to evaluate this integral, we use method of Substitution.

So, Substitute

\rm \:  \sqrt{1 -  {x}^{2} } = y \\

\rm \: 1 -  {x}^{2} =  {y}^{2}  \\

\rm \:  - 2x \: dx \:  =  \: 2y \: dy \\

\rm \:  - x \: dx \:  =  \: y \: dy \\

So, on substituting these values, we get

\rm \: =  \:x \: {cos}^{ - 1}x \:  -  \: \displaystyle \sf \int  \frac{y \: dy}{y}  \\

\rm \: =  \:x \: {cos}^{ - 1}x \:  -  \: \displaystyle \sf \int  dy  \\

\rm \: =  \:x \: {cos}^{ - 1}x \:  -  \: y  \: + \: c  \\

\rm \: =  \:x \: {cos}^{ - 1}x \:  -  \:  \sqrt{1 -  {x}^{2} }  \: + \: c  \\

Hence,

\boxed{\sf{  \: \: \rm \: \displaystyle \sf \int arc \: cosx=  \:x \: {cos}^{ - 1}x \:  -  \:  \sqrt{1 -  {x}^{2} }  \: + \: c  \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

Integration by parts :-

\displaystyle \sf \int u. \: v \: dx \:  =  \: u\displaystyle \sf \int v \: dx \:  -  \: \displaystyle \sf \int \bigg[\dfrac{d}{dx} u \: \displaystyle \sf \int v \: dx\bigg]dx \\

where u and v are chosen according to the word ILATE.

I : Inverse Trigonometric function

L : Logarithmic function

A : Arithmetic function

T : Trigonometric function

E : Exponential function

which alphabet comes first, is preferred to take as u and other as v.

\rm \: \displaystyle \rm \int  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} +  c \\

\rm \: \dfrac{d}{dx}{cos}^{ - 1}x \:  =  \:  \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } }  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by talpadadilip417
4

Step-by-step explanation:

simple way.

Put \tt\cos ^{-1} x=t so that \tt x=\cos t and \tt d x=-\sin t d t

 \color{magenta}\begin{aligned} \tt \therefore \quad \int \cos ^{-1} x d x & \tt=-\int t \sin t d t \\  \\ & \tt=-\left[t \cdot(-\cos t)-\int 1 \cdot(-\cos t) d t\right]  \\&  \qquad\qquad \qquad\qquad   \text{ [integrating \:  \: by \:  \: parts]}    \\  \\ &  \tt=t \cos t-\int \cos t d t\\  \\ &  \tt=t \cos t-\sin t+C \\  \\ & \tt=x \cos ^{-1} x-\sqrt{1-x^{2}}+C \\ & \qquad \qquad\qquad \tt \left[\because \cos t=x \Rightarrow \sin t=\sqrt{1-x^{2}}\right] . \end{aligned}

Similar questions