Math, asked by sowbhakya21, 8 months ago

8p³+q³+125r³-30pqr factorise the following​

Answers

Answered by anindyaadhikari13
5

\star\:\:\bf\large\underline\blue{Question:-}

  • Factorise 8 {p}^{3}  +  {q}^{3}  + 125 {r}^{3}  - 30pqr

\star\:\:\bf\large\underline\blue{Solution:-}

8 {p}^{3}  +  {q}^{3}  + 125 {r}^{3}  - 30pqr

 =  {(2p)}^{3}  +  {(q)}^{3}  +  {(5r)}^{3}  - 3 \times (2p \times q \times 5r)

 = (2p + q + 5r)(4 {p}^{2}  +  {q}^{2}  + 25 {r}^{2}  - 2pq - 5qr - 10pr)

\star\:\:\bf\large\underline\blue{Answer:-}

  •  (2p + q + 5r)(4 {p}^{2}  +  {q}^{2}  + 25 {r}^{2}  - 2pq - 5qr - 10pr)
Answered by Anonymous
1

Answer:

(2p+q+5r) ( 4p²+q²+25r²-2pq-5qr-10rp)

Step-by-step explanation:

8p³+q³+125r³-30pqr

=(2p)³+q³+(5r)³-3*(2p)(q)(5r))

Now let 2p=a ,q=b and 5r=c

then we get

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

Putting the values of a,b,c we get

(2p+q+5r) ( 4p²+q²+25r²-2pq-5qr-10rp)

Similar questions