(8x³y)²x√81x⁴y²÷(x³y²)²=2a3bxcyd
Answers
Step-by-step explanation:
Given :-
[(8x³y)²×√(81x⁴y²)]/(x³y²)² = 2^a3^bx^cy^d
To find :-
Find the values of a ,b, c and d ?
Solution :-
Given that :
[(8x³y)²×√(81x⁴y²)]/(x³y²)² = 2^a3^bx^cy^d
On taking LHS
=>[(8x³y)²×√(81x⁴y²)]/(x³y²)²
8 can be written as 2×2×2 = 2³
81 can be written as 3×3×3×3 = 3⁴
=> [(2³x³y)²×√(3⁴x⁴y²)]/(x³y²)²
=> [(2³)²(x³)²(y)²×√(3⁴x⁴y²)]/(x³y²)²
Since (ab)^m = a^m × b^m
=> [2⁶x⁶y²×√(3⁴x⁴y²)]/(x³y²)²
=> [2⁶x⁶y²×√({3²x²y}²)]/(x³y²)²
=> [2⁶x⁶y²×(3²x²y)]/(x⁶y⁴)
Since (a^m)^n = a^(mn)
=> (2⁶×x⁶×y²×3²×x²×y/(x⁶y⁴)
=> (2⁶×3²×x⁶×x²×y²×y)/(x⁶y⁴)
=> (2⁶×3²×x⁸×y³)/(x⁶y⁴)
Since a^m × a^n = a^(m+n)
=>2⁶×3²×(x⁸-⁶)×(y³-⁴)
Since a^m/a^n = a^(m-n)
=> 2⁶×3²×x²×y-¹
Now,
2⁶×3²×x²×y-¹ = 2^a 3^b x^c y^d
On Comparing both sides then
a = 6
b = 2
c = 2
d = -1
Answer:-
The value of a = 6
The value of b = 2
The value of c = 2
The value of d = -1
Used formulae:-
- a^m × a^n = a^(m+n)
- a^m / a^n = a^(m-n)
- (a^m)^n = a^(mn)
- (ab)^m = a^m × a^n
Answer:
tennetiraj sir please answer my question