Math, asked by omikachourasiya09, 5 months ago

8y3 - 27 = ?
step by step explanation ​

Answers

Answered by aliabidi09
2

Step-by-step explanation:

 {(8)y}^{3}  - 27

( {2y)}^{ 3}  -  {(3)}^{3}

Usind Identity of

( {a}^{3}  -  {b}^{3} ) = (a - b)(  {a} ^{2}  + ab +  {b}^{2} )

It can be written as

(2y - 3)(4 {y}^{2}  + 6y + 9)

Answered by balaji148417
1

Factor 8y^3-27

8y3−278y3-27

Rewrite 8y38y3 as (2y)3(2y)3.

(2y)3−27(2y)3-27

Rewrite 2727 as 3333.

(2y)3−33(2y)3-33

Since both terms are perfect cubes, factor using the difference of cubes formula, a3−b3=(a−b)(a2+ab+b2)a3-b3=(a-b)(a2+ab+b2) where a=2ya=2y and b=3b=3.

Apply the product rule to 2y2y.

(2y−3)(22y2+2y⋅3+32)(2y-3)(22y2+2y⋅3+32)

Raise 22 to the power of 22.

(2y−3)(4y2+2y⋅3+32)(2y-3)(4y2+2y⋅3+32)

Multiply 33 by 22.

(2y−3)(4y2+6y+32)

Similar questions