9. 2x + 3y = 5 and 4x + ky = 8 pair of linear equations has uniqu
solution. Then
A) k#2 B) k24 C) k#6 D) k = 8
Answers
Answer:
C ) k ≠ 6
Step-by-step explanation:
Given pair of linear equations
- 2x + 3y = 5
- 4x + ky = 8
For the equations to have unique solution
- a(1) / a(2) ≠ b(1) / b(2)
Comparing the given pair of equations with a(1) x + b(1) y = c(1) and a(2) x + b(2) y = c(2) we get,
- a(1) = 2
- a(2) = 4
- b(1) = 3
- b(2) = k
⇒ a(1) / a(2) ≠ b(1) / b(2)
⇒ 2 / 4 ≠ 3 / k
⇒ 1 / 2 ≠ 3 / k
⇒ k ≠ 3 × 2
⇒ k ≠ 6
Therefore the given equation has unique solution for all real values of k except 6 i.e k ≠ 6 ( Option C )
Answer:
C ) k ≠ 6
Step-by-step explanation:
Given pair of linear equations
- 2x + 3y = 5
- 4x + ky = 8
For the equations to have unique solution
- a(1) / a(2) ≠ b(1) / b(2)
Comparing the given pair of equations with a(1) x + b(1) y = c(1) and a(2) x + b(2) y = c(2) we get,
- a(1) = 2
- a(2) = 4
- b(1) = 3
- b(2) = k
⇒ a(1) / a(2) ≠ b(1) / b(2)
⇒ 2 / 4 ≠ 3 / k
⇒ 1 / 2 ≠ 3 / k
⇒ k ≠ 3 × 2
⇒ k ≠ 6
Therefore the given equation has unique solution for all real values of k except 6 i.e k ≠ 6 ( Option C )
Answer:
C ) k ≠ 6
Step-by-step explanation:
Given pair of linear equations
- 2x + 3y = 5
- 4x + ky = 8
For the equations to have unique solution
- a(1) / a(2) ≠ b(1) / b(2)
Comparing the given pair of equations with a(1) x + b(1) y = c(1) and a(2) x + b(2) y = c(2) we get,
- a(1) = 2
- a(2) = 4
- b(1) = 3
- b(2) = k
⇒ a(1) / a(2) ≠ b(1) / b(2)
⇒ 2 / 4 ≠ 3 / k
⇒ 1 / 2 ≠ 3 / k
⇒ k ≠ 3 × 2
⇒ k ≠ 6