Math, asked by hasheerbhai3, 3 months ago

9. (4,7). (1, 4), (3, 2), (6,5) are the vertices of a parallelogram. Then find the intersect
point of its diagonals.​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\textsf{Vertices of a parallelogram are}

\mathsf{(4,7),(1,4),(3,2),(6,5)}

\textbf{To find:}

\textsf{Point of intersection of diagonals}

\textbf{Solution:}

\textsf{Let the vertices be A(4,7),B(1,4),C(3,2),D(6,5) }

\textsf{We know that,}

\boxed{\textsf{Diagonals of parallelogram bisect each other}}

\implies\textsf{Mid point of diagonal AC= Mid point of diagonal BD}

\implies\textsf{Point of interection of diagonals}

\textsf{=Mid point of the diagonals}

\mathsf{=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{=\left(\dfrac{4+3}{2},\dfrac{7+2}{2}\right)}

\mathsf{=\left(\dfrac{7}{2},\dfrac{9}{2}\right)}

\therefore\mathsf{Point\;of\;intersection\;of\;diagonals\;is\;\left(\dfrac{7}{2},\dfrac{9}{2}\right)}

\textbf{Find more:}

If A(1,3) ,B(-1,2),C(x,4) and D(2,5) are vertices of parallelogram then write the value of x​

https://brainly.in/question/38145334

Similar questions