In a right triangle ABC, Right angled at C in which AB=13cm,BC=5cm, determine the value of cos²B+sin²A
Answers
{Some correction in question}
Question : In a right ∆ ACB, Right angled at C in which AB = 13 cm, BC = 5 cm, determine the value of cos²B + sin²A (Letter which represents the right angle we write that letter in center i.e. ∆ ACB)
Given data : In a right ∆ ACB, Right angled at C in which AB = 13 cm BC = 5 cm.
To find : Determine the value of cos²B + sin²A
Solution :
Here, according to given,
- Hypotenuse is AB
Now, to find Hypotenuse,
⟹ (AB)² = (AC)² + (BC)²
⟹ (AB)² = (13)² + (5)²
⟹ (AB)² = 169 + 15
⟹ (AB)² = 194
⟹ AB = √194 cm
Now,
- adjecent side of angle B = side BC
Now, by formula
⟹ cos θ = adjecent side/hypotenuse
⟹ cos B = adjecent side/hypotenuse
⟹ cos B = 5/√194 ____( 1 )
similarly,
- opposite side of angle A = side BC
⟹ sin θ = opposite side/hypotenuse
⟹ sin B = opposite side/hypotenuse
⟹ sin B = 5/√194 ____( 2 )
Now,
⟹ cos²B + sin²A = (5/√194)² + (5/√194)²
⟹ cos²B + sin²A = 25/194 + 25/194
⟹ cos²B + sin²A = 50/194
⟹ cos²B + sin²A = 25/97
⟹ cos²B + sin²A = 25/97 or 0.2577 (approx)