Math, asked by timtim44, 9 months ago

9. At what rate per cent per annum will * 6,000
amount to * 6,615 in 2 years when interest
is compounded annually ?
und interest does​

Answers

Answered by SarcasticL0ve
6

GivEn:-

  • Principal = Rs. 6,000

  • Amount = Rs. 6,615

  • Time = 2 years

To find:-

  • Rate of interest.

SoluTion:-

✩ As we know that,

\dag\;{\underline{\boxed{\bf{\blue{Simple\; Interest\;(S.I.) = Amount - Principal}}}}}

:\implies S.I. = (6,615 - 6,000) Rs.

:\implies{\underline{\boxed{\bf{\pink{S.I. = Rs.\;615}}}}}

▬▬▬▬▬▬▬▬▬▬

☯ Now, We have to find Rate % :-

✩ As we know that,

\dag{\underline{\boxed{\bf{\purple{Simple\; Interest = \dfrac{P \times R \times T}{100}}}}}}

\small\sf\;\;\star\; {\underline{\green{Putting\;values\;in\;above\;formula:-}}}

:\implies\sf 615 = \dfrac{60 \cancel{00} \times 2 \times R}{1 \cancel{00}}

:\implies 615 = 120 × R

:\implies\sf R = \dfrac{615}{120}

:\implies{\underline{\boxed{\bf{\pink{R = 5.125 \% \;per\;annum}}}}}

\dag Hence, The Rate of interest is 5.125% per annum.

▬▬▬▬▬▬▬▬▬▬

\begin{lgathered}\begin{lgathered}\boxed{\begin{minipage}{7 cm}\boxed{\underline{\underline{\bigstar\:\bf\:Extra\:Brainly\:knowlegde\:\bigstar}}}\\\\1) Profit = SP - CP\\\\2) Loss = CP - SP\\\\3) Profit\% = (Profit in Rs.)*100/CP\\\\4) Loss\% = (Loss in Rs.)*100/CP\\\\5) SP = CP*(100+P\%)/100\\\\6) SP = CP*(100-L\%)/100\\\\7) CP = SP*100/(100+P\%)\\\\8) CP = SP*100/(100-L\%)\\\\9) Discount =MP - SP\\\\10) Discount\%=(Discount in Rs.)*100/MP\\\\11) SP = MP*(100-D\%)/100\\\\12) MP = SP*100/(100-D\%)\\\\\end{minipage}}\end{lgathered}\end{lgathered}


BraɪnlyRoмan: Nice♡
Answered by TheProphet
5

Solution :

\underline{\bf{Given\::}}}}

  • Principal, (P) = Rs.6000
  • Amount, (A) = Rs.6615
  • Time, (n) = 2 years

\underline{\bf{To\:find\::}}}}

The rate & Interest of the compounded annually.

\underline{\bf{Explanation\::}}}}

Using formula of the compounded annually :

\boxed{\bf{Amount=Principal\bigg(1+\frac{R}{100} \bigg)^{n} }}}

\longrightarrow\sf{6615=6000\bigg(1+\dfrac{R}{100} \bigg)^{2} }\\\\\\\longrightarrow\sf{\cancel{\dfrac{6615}{6000} }=\bigg(1+\dfrac{R}{100} \bigg)^{2} }\\\\\\\longrightarrow\sf{\dfrac{441}{400}=\bigg(1+\dfrac{R}{100} \bigg)^{2}}\\\\\\\longrightarrow\sf{2\sqrt{\dfrac{441}{400} } =1+\dfrac{R}{100} }\\\\\\\longrightarrow\sf{\dfrac{21}{20} =1+\dfrac{R}{100} }\\\\\\\longrightarrow\sf{\dfrac{21}{20} -1=\dfrac{R}{100}}\\\\\\\longrightarrow\sf{\dfrac{21-20}{20} =\dfrac{R}{100} }\\\\\\

\longrightarrow\sf{\dfrac{1}{20} =\dfrac{R}{100} }\\\\\longrightarrow\sf{20R=100}}\\\\\longrightarrow\sf{R=\cancel{100/20}}\\\\\longrightarrow\bf{R=5\%}

We know that compound Interest, we get;

⇒ C.I = Amount - Principal

⇒ C.I = Rs.6615 - Rs.6000

⇒ C.I = Rs.615

Thus;

The rate of the Interest will be 5% & Interest Rs.615 .

Similar questions