Math, asked by mk2930217, 5 months ago

9. Determine real numbers x and y for which the following equations are true:
(i) 2x + (3x + y) i = 4 + 10i​

Answers

Answered by Anonymous
72

\underline{\sf{\red{Given:-}}}

  • \sf\ 2x + (3x+y) i = 4 + 10i

\underline{\sf{\red{Solution:-}}}

According to the question:-

\dashrightarrow\: \sf\ 2x=4, 3x+4y = 10

\dashrightarrow\: \sf\ x = \dfrac{4}{2}

\dashrightarrow\: \sf\ x= 2

Now, put value of x in other equation,

\dashrightarrow\: \sf\ 3(2)+4y=10

\dashrightarrow\: \sf\ 6+4y=10

\dashrightarrow\: \sf\ 4y =10-6

\dashrightarrow\: \sf\ 4y =4

\dashrightarrow\: \sf\ y= 1

Hence proved.

Answered by Anonymous
37

Given Equation

  • 2x + (3x + y)i = 4 + 10i

To find

  • Value of x and y.

Solution

On comparing the equation, we get

  • 2x = 4
  • 3x + y = 10

Solving both the equation

\tt:\implies\: \: \: \: \: \: \: \: {2x = 4}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{4}{2}}

\tt:\implies\: \: \: \: \: \: \: \: {x = 2}

Putting the value of x in second Equation

\tt:\implies\: \: \: \: \: \: \: \: {3x + y = 10}

\tt:\implies\: \: \: \: \: \: \: \: {3(2) + y = 10}

\tt:\implies\: \: \: \: \: \: \: \: {6 + y = 10}

\tt:\implies\: \: \: \: \: \: \: \: {y = 10 - 6}

\tt:\implies\: \: \: \: \: \: \: \: {y = 4}

Hence, the value of

  • x = 2
  • y = 4
Similar questions