Math, asked by mendirattapooja26, 4 months ago

9. If a = 7 + 4√3 , then find the value of a²+1/a²​

Answers

Answered by ItsAritra22
0

 \huge\fbox\red{ \fbox\pink{Solutions:-}}

 \fbox\red{ \fbox\orange{Given:-}}

 \red{a = 7 +  4\sqrt{3} }

 \fbox\red{ \fbox\blue{To find:-}}

 \green {{a}^{2}  +  \frac{1}{ {a}^{2} } }

 \fbox\red{ \fbox\green{By the problem:-}}

 \red{a = 7 +  4\sqrt{3} } \\  =  >   \pink{\frac{1}{a}  =  \frac{1}{7 +  4\sqrt{3} } }

 \fbox\red{ \fbox\red{Rationalise:-}}

   \frac{1}{a}  =  \frac{1}{7 +  4\sqrt{3} } \\  =    \frac{1 \times (7 -  4\sqrt{3}) }{(7 + 4 \sqrt{3})(7 -  4\sqrt{3} ) }  \\  =  \frac{7 -  4\sqrt{3} }{49 - 48}  \\  =  \frac{7 -  4\sqrt{3} }{1}  \\  =  7   - 4 \sqrt{3}

 {a}^{2}  +  \frac{1}{ {a}^{2} }  =  \\ =  > {a}^{2}  +  \frac{1}{ {a}^{2} } + 2 = 2 -  -  -  -  - (add \: 2 \: in \: both \: sides)  \\  =  >  {(a)}^{2}  +  (\frac{1}{ {a}^{2} } ) + 2 \times a \times  \frac{1}{a}  = 2 \\  =  > ( {a +  \frac{1}{a}) }^{2}  = 2 \\

 \fbox\red{ \fbox\red{Plot the value:-}}

 ({a +  \frac{1}{{a}^{} } )}^{2}  = 2 \\ =  >   {(7 +  4\sqrt{3} + 7 -  4\sqrt{3} )}^{2}  = 2 \\  =  >  {(14)}^{2}  = 2 \\  =  > 196 - 2  \\  =  > 194

 \fbox\red{ \fbox\red{Answer:-}}

194

Similar questions