Physics, asked by clara1516, 1 year ago

9.) If kinetic energy of body decreases by 36%then percentage change in its linear momentum will be
(1) +20% 2) -20%
(3) +18% (4) -18% ​

Answers

Answered by rajsingh24
8

Answer:

hey mate your answer is

Explanation:

K= p /2m

p= square root.2mK

decrease in Kinetic energy= 36% of K

i.e 36/100 * K = 0.36k

Final K.E , K'= 0.64

Final momentum, p' = square rt. 2mK' = sqr. rt. 2m x 0.64

= 0.64 square root 2mK = 0.8

increase in p

p-p'/p x 100 = p1.2p/p x 100 = 20%.

plz mark the brilliant answer thank you.

Answered by ShivamKashyap08
23

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Let the initial Kinetic energy be "K".
  • Let the Final Kinetic energy be "K' ".
  • Initial momentum be "P".
  • Final momentum be "P' ".
  • Kinetic energy is decreased by 36%.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

As question said that 36% is decreased,

Then,

\large{\tt Final \: K.E - Initial \: K.E = - 36 \% K}

\large{\tt K' - K = -  \dfrac{36}{100}K}

[Here negative sign indicates that the Kinetic energy decreases]

\large{\tt K' - K = - 0.36K}

\large{\tt K' = K - 0.36K}

\large{\boxed{\tt K' = 0.64K}}

\rule{300}{1.5}

\rule{300}{1.5}

As we know, the momentum and , Kinetic energy relation,

\large{\boxed{K = \dfrac{P^2}{2m}}}

Now,

\large{\tt P^2 = 2mK}

\large{\boxed{\tt P = \sqrt{2mK}}}

This is the initial momentum of the body,

\rule{300}{1.5}

\rule{300}{1.5}

Now,Final momentum,

\large{\tt P' = \sqrt{2mK'}}

Substituting the values of K',

\large{\tt P' = \sqrt{2m \times 0.64K}}

\large{\tt P' = \sqrt{0.64 \times 2mK}}

\large{\tt P' = 0.8 . \sqrt{2mK} \: \: \: \:  [\sqrt{0.64} = 0.8]}

As we know, {\tt P = \sqrt{2mK}}

Substituting it

\large{\tt P' = 0.8 P}

\rule{300}{1.5}

\rule{300}{1.5}

Now, Percentage change,

\large{\boxed{\tt Change \: \% = \dfrac{Final \ Momentum - Initial \: Momentum}{Initial \: momentum} \times100}}

Substituting the values,

\large{\tt Change \: \% = \dfrac{P' - P}{P} \times 100}

\large{\tt Change \: \% = \dfrac{0.8P - P}{P} \times 100}

\large{\tt Change \: \% = \dfrac{-0.2P}{P} \times 100}

\large{\tt Change \: \% = \dfrac{-0.2\cancel{P}}{\cancel{P}} \times 100}

It comes as,

\large{\tt Change \: \% = - 0.2 \times 100}

\huge{\boxed{\boxed{\tt Change\: \% = - 20\:  \%}}}

So, the change in momentum is - 20%[Option - (1)].

\rule{300}{1.5}

Note:-

  • {\tt K = Initial \: Kinetic energy}
  • {\tt K' = Final \: Kinetic \: energy}
  • {\tt P = Initial \: Linear \: momentum}
  • {\tt P' = Final \: Linear \: momentum}
Similar questions