9. If the join of ends of the latusrectum of x^2= 8y
subtends an angle A°at the vertex of the
parabola then cos A° =
Answers
Given: The join of ends of the latus rectum of x^2= 8y subtends an angle A°at the vertex of the parabola.
To find: The value of cos A?
Solution:
- Now we have given x^2 = 8y.
x^2 = 4(2)(y)
- Comparing the above equation with x^2 = 4ay, we get:
a = 2
- So focus will be: (0,a) = (0,2)
- Now putting 2 in equation, we get:
x^2 = 8(2) = 16
x = ±4
- So the points will be:
(-4,2) and (4,2)
- Now joining (0,2), (-4,2) and (4,2) with (0,0) a triangle is formed.
- Let A = (4,2), B = (-4,2) and O = (0,0).
- So the distance will be:
AB = √(4 - (-4))^2 + (2 - 2)^2
AB = √64 = 8 cm
OB = √(0 - (-4))^2 + (0 - 2)^2
OB = √16 + 4 = √20 = 2√5 cm
OA = √(0 - 4)^2 + (0 - 2)^2
OA = √16 + 4 = √20 = 2√5 cm
- Now using cosine rule, we get:
cos A = (2√5)^2 + (2√5)^2 - (8)^2 / 2 x (2√5) x (2√5)
cos A = 20 + 20 - 64 / 40
cos A = -24/40
cos A = -3/5
Answer:
So the value of cos A is -3/5.