9) ifa + 2b = 5 and ab = 2, find a + 4bº1
Answers
Answer:
9 or 6
Step-by-step explanation:
Given---> a + 2 b = 5 and ab = 2
To find---> Value of a + 4b
Solution---> ATQ, a + 2 b = 5 ..................(1)
ab = 2 ........................(2)
Now we solve these equations
a + 2b = 5
=> a = 5 - 2b
Putting a = 5 - 2b in equation ( 1 ) , we get,
=> ( 5 - 2b ) b = 2
Multiplying by b in to bracket , we get,
=> 5 b - 2 b b = 2
=> 5 b - 2 b² = 2
=> - 2 b² + 5 b - 2 = 0
Chabging the sign of whole equation , we get,
=> 2b² - 5b + 2 = 0
Now we factorize it by splitting the middle term
=> 2b² - ( 4 + 1 ) b + 2 = 0
=> 2b² - 4b - b + 2 = 0
=> 2b ( b - 2 ) - 1 ( b - 2 ) = 0
=> ( b - 2 ) ( 2b - 1 ) = 0
If, b - 2 = 0
=> b = 2
Now a = 5 - 2 b
a = 5 - 2 ( 2 )
a = 5 - 4
a = 1
So , a + 4b = 1 + 4 ( 2 )
= 1 + 8
a + 4 b = 9
If , 2 b - 1 = 0
=> 2 b = 1
=> b = 1 / 2
a = 5 - 2b
= 5 - 2 ( 1 / 2 )
= 5 - 1
a = 4
Now , a + 4b = 4 + 4 ( 1 / 2 )
= 4 + 2
= 6
#Answerwithquality
#BAL