Math, asked by manojsingh140194, 3 months ago

9. IfA: B = B:C=C:D=D: E and A: D = 64
125, then find
(i) A: E = ?
(a) 110:55
(b) 420:221
(c) 256: 625
(d) 220 : 110​

Answers

Answered by nikitha838373
1

Answer:

A:E = 256:625

Step-by-step explanation:

Hope it helps you

Answered by vijaykarthick18
0

Answer:

A:E = 256:625, B:E = 64:125 and C:E = 16:25.

Step-by-step explanation:

We have,

A:B = B:C = C:D = D:E = x (say)

Also,

A:D = 64:125

So,

On multiplying the terms with each other we get,

\begin{gathered}\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D} = x \times x \times x = x^{3}\\ \\\frac{A}{D} = \frac{64}{125} = x^{3}\\\\So,\\x = \frac{4}{5}\end{gathered}

B

A

×

C

B

×

D

C

=x×x×x=x

3

D

A

=

125

64

=x

3

So,

x=

5

4

So,

\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D} \times \frac{D}{E}=\frac{A}{E}=x^{4}=(\frac{4}{5} )^{4}=\frac{256}{625}

B

A

×

C

B

×

D

C

×

E

D

=

E

A

=x

4

=(

5

4

)

4

=

625

256

Now,

\begin{gathered}\frac{B}{C} \times \frac{C}{D}\times \frac{D}{E} = \frac{B}{E} = x^{3} = (\frac{4}{5} )^{3} = \frac{64}{125}\\also,\\\frac{C}{D}\times \frac{D}{E}=\frac{C}{E}=x^{2}=(\frac{4}{5} )^{2}=\frac{16}{25}\end{gathered}

C

B

×

D

C

×

E

D

=

E

B

=x

3

=(

5

4

)

3

=

125

64

also,

D

C

×

E

D

=

E

C

=x

2

=(

5

4

)

2

=

25

16

Therefore, the value of A:E = 256:625, B:E = 64:125 and C:E = 16:25.

Similar questions