Math, asked by loverboyvarun98, 1 year ago

9^n*3^2*3^n-(27)^n /(3^3)^5*2^3=1/27

Answers

Answered by syedabdul4665
5
(9^n*3^2*3^n-(27)^n)/(3^3)^5*2^3=1/27

(3^(2n)*3^2*3^n-(27)^n)/(3^(15)*2^3)=1/27

(3^(3n+2)-3^(3n))/(3^(15)*2^3)=1/3^3

3^(3n+5)-3^(3n+3)=3^(15)*2^3

3^(3n+3)(3^2-1)=3^(15)*8

3^(3n+3)*8=3^(15)*8

Therefore, 3n+3=15 => n=4
Answered by Anonymous
19

\huge{\underline{\underline{\bf{\purple{Solution:}}}}}

 \frac{ {9}^{n}  \times  {3}^{2}  \times  {3}^{n}  -  {(27)}^{n} }{   {3}^{(3 \times 5)}  \times   {2}^{3}   }  =  \frac{1}{27}

 \frac{ {9}^{n}  \times  {3}^{2}  \times  \ {3}^{n}   -  {(27)}^{n} }{   {3}^{(3 \times 5)}  \times   {2}^{3}   }  =  \frac{1}{  ({3}^{3})  }

 =  \frac{ {3}^{2n}  \times  {3}^{2}  \times   {3}^{n}   -  {(27)}^{n} }{   {3}^{15}  \times   {2}^{3}   }

 =  \frac{ {3}^{2n}  \times  {3}^{2}  \times   {3}^{n}   -  {(27)}^{n} }{   {3}^{15}  \times   {2}^{3}  = {3}^{-3} }

 = [{3}^{(2n+n+2)} - {3}^{3n}] = {3}^{-3} \times {3}^{15} \times{2}^{3} }

 = {3}^{(3n+2)} - {3}^{3n} = {3}^{-3+15} \times {2}^{3} }

 = {3}^{3n} ({3}^{2} - 1) = {3}^{12} \times {2}^{3} }

 = {3}^{3n} \times 8 = {3}^{12} \times 8 } }

 = {3}^{3n} = \frac{ {3}^{12} \times 8}{8} = {3}^{12} }

\huge{\underline{\underline{\bf{\orange{3n=12}}}}}

\huge{\underline{\underline{\bf{\green{n=4}}}}}

Hence, n = 4

Similar questions