Math, asked by kiranadithya11, 1 year ago

9^n*3^2*3n-(27)^n/
(3^15*2^3=1/27​

Answers

Answered by yogita056
2

Given that, ( 9^n x 3^2 x (3^-n/2)^-2 - 27^n) /( 3^3m x 2^3) = 1/27

⇒ (3^2n x 3^2 x { 3^-(-2n/2) } - 3^3n )/ 3^3m x 2^3 = 1/(3^3)

⇒ (3^2n x 3^2 x {3^n} - 3^3n )/ 3^3m x 2^3 = 3^(-3)

⇒ ( 3^3n x 3^2 - 3^3n )/ 3^3m x 2^3 = 3^(-3)

⇒ 3^3n[ 3^2 - 1] / 3^3m x 2^3 = 3^(-3)

⇒ 3^3n[ 9 - 1 ] /3^3m x 8 = 3^(-3)

⇒ 3^3n x 8 /3^3m x 8 = 3^(-3)

⇒ 3^(3n-3m) = 3^(-3)

comparing powers on both side, we get

3n - 3m = -3

⇒ 3(n-m) = -3

⇒ (n-m) = -1

or m-n = 1

Hence proved...Show more

0

Answered by Anonymous
4

\Large{\underline{\underline{\red{\mathfrak{Given:-}}}}}

\rm{ \frac{ {9}^{n} \times  {3}^{2}  \times  {3}^{n}  -  {27}^{n}  }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{27} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\orange{\mathfrak{To \: find:-}}}}}

\rm{m-n=1}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\pink{\mathfrak{Solution:-}}}}}

\rm{ \frac{ {9}^{n} \times  {3}^{2}  \times  {3}^{n}  -  {27}^{n}  }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{27} }

\rm{ \frac{  ( { ({3}^{2} )}^{n}  \times  {3}^{2}  \times  {3}^{n}   \times  -  { ({3}^{3}) }^{n} }{ {3}^{3m} \times  {2}^{3}  }  =  \frac{1}{27} }

\rm{ \frac{ {3}^{2n}  \times  {3}^{2}  \times  {3}^{n}  -  {3}^{3n} }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{27} }

\rm{ \frac{ {3}^{2n + 2 + n}  -  {3}^{3n} }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{ {3}^{3} } }

\rm{ \frac{ {3}^{3n + 2}  -  {3}^{n} }{ {3}^{m} \times  {2}^{3}  }  =  \frac{1}{ {3}^{3} } }

\rm{ \frac{ {3}^{3n }   \times  {3}^{2} -  {3}^{n} }{ {3}^{m} \times  {2}^{3}  }  =  \frac{1}{ {3}^{3} } }

\rm{ \frac{ {3}^{3n} ( {3}^{2} - 1) }{ { 3}^{3m} \times 8 }  =  \frac{1}{ {3}^{3} } }

\rm{ \frac{ {3}^{3n}  \times 8 }{ { 3}^{3m} \times 8 }  =  \frac{1}{ {3}^{3} } }

\rm{ {3}^{3n - 3m}  =  {3}^{ - 3} }

\rm{3n-3m=-3}

\rm{n-m=-1}

\rm{m-n=1}

{\bold{\underline{\underline{\green{\mathfrak{Hence\: Verified!}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\blue{\mathfrak{Thanks}}}}}

Similar questions