Math, asked by peeyushidhamma, 1 month ago

9)
Rationalise the denominator of

Attachments:

Answers

Answered by Anonymous
6

Step-by-step explanation:

  \frac{4 \sqrt{3} - 5 \sqrt{2}  }{4 \sqrt{3}  - 3 \sqrt{2} }

On rationalizing the denominator,

 \frac{4 \sqrt{3}  - 5 \sqrt{2} }{4 \sqrt{3}  - 3 \sqrt{2} }  \times  \frac{4 \sqrt{3}  + 3 \sqrt{2} }{4 \sqrt{3} + 3 \sqrt{2}  }

 { \frac{4 \sqrt{3} (4 \sqrt{3}  - 5 \sqrt{2}) + 3 \sqrt{2}(  4 \sqrt{3}  - 5 \sqrt{2})}{(4 \sqrt{3})^{2}  - (3 \sqrt{2})^{2}  }  }

 \frac{16 \times 3 - 20 \sqrt{6} + 12 \sqrt{6}  - 15 \times 2 }{16 \times 3 - 9 \times 2}

 \frac{48 - 8 \sqrt{6}  - 30}{48 - 18}

  \frac{ 12 - 8 \sqrt{6} }{30}

  \frac{ 2(6 - 4 \sqrt{6} )}{30}

 \frac{  6 - 4 \sqrt{6} }{15}

I hope it is helpful

Similar questions