Math, asked by NilotpalSwargiary, 8 months ago

9. Show that : 1 + tan2A tanA = tan2A cotA - 1 = sec2A​

Answers

Answered by prabjeetsingh6
6

Answer:

Step-by-step explanation:

First:

1 + \tan 2A \tan A = 1 + \cfrac{2 \tan A}{1 - \tan^2 A} \times \tan A

=1 + \cfrac{2 \tan^2 A}{1 - \tan^2 A}

= \cfrac {1 - \tan^2 A + 2 \tan^2 A}{1 - \tan^2 A}

=\cfrac{1+\tan^2 A}{1 - \tan^2 A}                       ...(1)

Second:

\tan 2A \cot A - 1 = \cfrac{2\tan A}{1 - \tan^2 A} \times \cfrac{1}{\tan A} - 1

= \cfrac{2}{1 - \tan^2 A} - 1

= \cfrac{2 - 1 + \tan^2 A}{1 - \tan^2 A}

= \cfrac{1 + \tan^2 A}{1 - \tan^2 A}                     ...(2)

Third

\sec 2A = \cfrac{1}{\cos 2A}

=\cfrac{1}{\cos^2 A - \sin^2 A}

=\cfrac{\cos^2 A + \sin^2 A}{\cos^2 A - \sin^2 A}

Divide numerator and denominator by \cos^2 A

=\cfrac{1 + \cfrac{\sin^2 A}{\cos^2 A}}{1 - \cfrac{\sin^2 A}{\cos^2 A}}

=\cfrac{1 + \tan^2 A}{1 - \tan^2 A}          ...(3)

From Eqns. (1), (2) and (3), we prove

1 + \tan 2A \tan A = \tan 2A \cot A - 1 = \sec 2A

Similar questions