Math, asked by muzakkir77, 1 year ago

9. The points A(2,9), B(k, 5) and C(5,5) are the vertices of a triangle ABC right angled at B.
the values of k and hence area of the triangle​

Answers

Answered by sarah92
1

Answer:

Given,

Vertices  = A(2,9) , B(k,5) and C(5,5)

Angle ABC= 90 degree

By Distance formula=√ [ (X2-X1)² + (Y2-Y1)²)]

AB = √[{5-9}²+ {k-2}²]

=√[ 16 + K² - 4k + 4]

=√(k² - 4k + 20)units 

AC = √[{5-9}²+{5-2}²]

=√[ 16 + 9]

= 5 units

BC = √[{5-5]²+{5-k}²]

=√[ 0+25-10k+k²]

=√( k²-10k+25) units

By pythagoras theorem(AC)² = (AB)² + (BC)²

25=k²-4k+20 + k²-10k+25

2k² -14k + 20=- 7k + 10 = k^2 - (5k+2k) +10 = 0 

(By Middle term factorization)

k² - 5k - 2k + 10 =k(k-5)-2(k-5)

=(k-5)(k-2)

 k-5=0                                                     k - 2 = 0 

k=5                                                       

k = 2 

if we put the value of k in BC, we get 0.

Hence k hould be taken as 2 

BC=3 units

AB=4 units

Area  = 1/2 * AB * BC(from 1/2 * base * height)

= 1/2 * 4 * 3=6 (unit) ²

Attachments:
Answered by WWWSMART
0

Answer:

hmmmmmmmmmm

Step-by-step explanation:

Similar questions