Math, asked by kaushikiyer0207, 6 months ago

9. The 'X' coordinate of the point which
divides the line segment joining the points
(4-3) and (8,5) in the ratio 3:1 is
O (a) 7
O (b) 3
O (c) 12
O (d) 4​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\textsf{The line segment joining (4,-3) and (8,5) is divided internally}

\textsf{in the ratio 3:1}

\textbf{To find:}

\textsf{x co-ordinate of point of division}

\textbf{Solution:}

\textbf{Section formula:}

\textsf{The co ordinates of the point which divides the}

\mathsf{line\;segment\;joining\;(x_1,y_1)\;and\;(x_2,y_2)\;internally\;in\;the\;ratio \;m:n\;are}

\boxed{\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}}

\textsf{Let P be the point of division}

\textsf{By section formula,}

\mathsf{The co-ordinates of P are given by}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{=\left(\dfrac{3(8)+1(4)}{3+1},\dfrac{3(5)+1(-3)}{3+1}\right)}

\mathsf{=\left(\dfrac{24+4}{4},\dfrac{15-3}{4}\right)}

\mathsf{=\left(\dfrac{28}{4},\dfrac{12}{4}\right)}

\mathsf{=(7,3)}

\therefore\textsf{The x co-ordinate of P is 7}

\textbf{Answer:}

\textsf{option (a) is correct}

\textbf{Find more:}

Find the co-ordinates of a point R when AR : RB = 2 :3 with A(1,3) and B(6,8).

https://brainly.in/question/27058242

Similar questions