Math, asked by disgustangshat6, 4 days ago

9. Two crossroads, each of width 5 m, ran at right angles through the centre of a rectangular park of length 50 m and breadth 30 m and parallel to its sides. How many square tiles of side 0.5 m will be needed to cover it?​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Two crossroads, each of width 5 m, ran at right angles through the centre of a rectangular park of length 50 m and breadth 30 m and parallel to its sides.

Length of rectangular park, l = 50 m

Width of rectangular park, b = 30 m

\rm \: Length \: of \:  the \:  shorter \:  path, \:  l_1 \: = \: 30 \: m \\

\rm \: Width \: of \:  the \:  shorter \:  path, \:  b_1 \: = \: 5 \: m \\

\rm \: Length \: of \:  the \:  longer \:  path, \:  l_2 \: = \: 50 \: m \\

\rm \: Width \: of \:  the \:  longer \:  path, \:  b_2 \: = \: 5 \: m \\

Now, Consider

\rm \: Area \: of \: shorter \: path,  \: A_1=l_1×b_1 \\

\rm \: A_1 = 30  \times 5

\rm\implies \:A_1 = 150 \:  {m}^{2}  \\

Now, Consider

\rm \: Area \: of \: longer \: path,  \: A_2=l_2×b_2 \\

\rm \: A_2 = 50 \times 5 \\

\rm\implies \:A_2 = 250 \:  {m}^{2}  \\

Now,

\rm \: Area \: of \: common \: path,  \: A_3=5 \times 5 \\

\rm\implies \:A_3 \:  =  \: 25 \:  {m}^{2}  \\

Thus,

\rm \: Area \: of \: path = A_1 + A_2 - A_3 \\

\rm \: =  \:150 + 250 - 25 \\

\rm \: =  \:375 \:  {m}^{2}  \\

\rm\implies \:\rm \: Area \: of \: path = 375 \:  {m}^{2}  \\

Now, Side of square tile = 0.5 m

\rm \: Area_{(square tile)} \:  =  \:  {side}^{2}  \\

\rm \: Area_{(square tile)} \:  =  \:  {(0.5)}^{2}  \\

\rm\implies \:Area_{(square tile)} = 0.25 \:  {m}^{2}  \\

Thus,

\rm \: Number_{(square tile)} =  \dfrac{Area \: of \: path}{Area_{(square tile)}}  \\

On substituting the values, evaluated above, we get

\rm \: Number_{(square tile)} = \dfrac{375}{0.25} = 1500  \\

Thus,

\rm\implies \: \boxed{\sf{  \:\rm \: \: Number_{(square \:  tile)} \: required \:  =  \: 1500 \:  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions