Physics, asked by brinda1667, 1 month ago

90% பயனுறுதிறன் கொண்ட 200V / 120V இறக்கு மின்மாற்றி ஒன்று 40 Ω மின்தடை கொண்ட மின்தூண்டல் அடுப்புடன் இணைக்கப்பட்டுள்ளது. மின்மாற்றியின் முதன்மைச்சுருளில் பாயும் மின்னோட்டத்தைக் காண்க.

Answers

Answered by spyXsenorita
0

Given,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)+x=\pi$}

Since \displaystyle\small\text{$\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\dfrac{a+b}{1-ab}\right),$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(\dfrac{2+3}{1-2\cdot3}\right)+x=\pi$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(-1\right)+x=\pi$}

We know \displaystyle\small\text{$\tan^{-1}(-1)=-\dfrac{\pi}{4}$} but here,

\displaystyle\small\text{$\longrightarrow\tan^{-1}(2)\in\left(0,\ \dfrac{\pi}{2}\right)$}

\displaystyle\small\text{$\longrightarrow\tan^{-1}(3)\in\left(0,\ \dfrac{\pi}{2}\right)$}

So,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)=\tan^{-1}(-1)\in(0,\ \pi)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)\in\left(\dfrac{\pi}{2},\ \pi\right)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)=\pi-\dfrac{\pi}{4}=\dfrac{3\pi}{4}$}

Therefore,

\displaystyle\small\text{$\longrightarrow\dfrac{3\pi}{4}+x=\pi$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{x=\dfrac{\pi}{4}}}$}

Answered by spyXsenorita
0

Given,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)+x=\pi$}

Since \displaystyle\small\text{$\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\dfrac{a+b}{1-ab}\right),$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(\dfrac{2+3}{1-2\cdot3}\right)+x=\pi$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(-1\right)+x=\pi$}

We know \displaystyle\small\text{$\tan^{-1}(-1)=-\dfrac{\pi}{4}$} but here,

\displaystyle\small\text{$\longrightarrow\tan^{-1}(2)\in\left(0,\ \dfrac{\pi}{2}\right)$}

\displaystyle\small\text{$\longrightarrow\tan^{-1}(3)\in\left(0,\ \dfrac{\pi}{2}\right)$}

So,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)=\tan^{-1}(-1)\in(0,\ \pi)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)\in\left(\dfrac{\pi}{2},\ \pi\right)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)=\pi-\dfrac{\pi}{4}=\dfrac{3\pi}{4}$}

Therefore,

\displaystyle\small\text{$\longrightarrow\dfrac{3\pi}{4}+x=\pi$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{x=\dfrac{\pi}{4}}}$}

Answered by spyXsenorita
0

Given,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)+x=\pi$}

Since \displaystyle\small\text{$\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\dfrac{a+b}{1-ab}\right),$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(\dfrac{2+3}{1-2\cdot3}\right)+x=\pi$}

\displaystyle\small\text{$\longrightarrow \tan^{-1}\left(-1\right)+x=\pi$}

We know \displaystyle\small\text{$\tan^{-1}(-1)=-\dfrac{\pi}{4}$} but here,

\displaystyle\small\text{$\longrightarrow\tan^{-1}(2)\in\left(0,\ \dfrac{\pi}{2}\right)$}

\displaystyle\small\text{$\longrightarrow\tan^{-1}(3)\in\left(0,\ \dfrac{\pi}{2}\right)$}

So,

\displaystyle\small\text{$\longrightarrow \tan^{-1}(2)+\tan^{-1}(3)=\tan^{-1}(-1)\in(0,\ \pi)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)\in\left(\dfrac{\pi}{2},\ \pi\right)$}

\displaystyle\small\text{$\Longrightarrow\tan^{-1}(-1)=\pi-\dfrac{\pi}{4}=\dfrac{3\pi}{4}$}

Therefore,

\displaystyle\small\text{$\longrightarrow\dfrac{3\pi}{4}+x=\pi$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{x=\dfrac{\pi}{4}}}$}

Similar questions