Math, asked by narendrakamath, 1 year ago

9P5+5×9P4=10Pr find r

Attachments:

narendrakamath: please answer this guys. tomorrow is my exam. please please plzzzzzzz
narendrakamath: Opps i cant

Answers

Answered by sayantanbro
3
9p5=9!/(9-5)!=9!/4!
9p4=9!/(9-4)!=9!/5!
now use the equation.
9!/4!+5×9!/5!=10pr
now solve it.
when you will get something p something=10pr
then by comparison you can tell r =something that you will get

sayantanbro: plz give me brainlist answer mark
sayantanbro: i really need it
narendrakamath: fine i'll see
sayantanbro: ok then plz give me when you will decide to give me
Answered by Anonymous
13

Answer :

We have,

 \sf \qquad \:  {}^{9}P_5 + 5. {}^{9} P_4 =  {}^{10}P _r \\  \\  \rightarrow \tt \frac{9!}{(9! - 5!)} + 5. \frac{9!}{(9 - 4)!} =  \frac{10!}{(10 - r)!}    \\  \\  \rightarrow \tt \frac{9!}{4!}  + 5. \frac{9!}{5!}  =  \frac{10!}{(10 - r)!}  \\  \\  \rightarrow \tt \frac{9!}{4!}  +  \frac{9!}{4!}  =  \frac{10!}{(10 - r)!}  \\  \\  \rightarrow \tt \: 2 \times  \frac{9!}{4!}  =  \frac{10!}{(10 - r)!}  \\  \\  \rightarrow \tt \frac{5 \times 2 \times 9!}{5 \times 4!}  =  \frac{10!}{(10 - r)!}  \\  \\  \tt \rightarrow \frac{10 \times 9!}{5!}  =  \frac{10!}{(10 - r)!}  \\  \\  \rightarrow \tt \frac{10!}{5!}  =  \frac{10!}{(10 - r)!}  \\  \\  \rightarrow \tt(10 - r)! = 5! \\  \\  \rightarrow \tt10 - r = 5 \\  \\  \implies \tt \: r = 5

Similar questions