Math, asked by Jaat8487, 1 year ago

9x²-12x+20=0
Solve by factorization method class 11

Answers

Answered by blackdronzer07
2
here is ur answer hope it helps
Attachments:
Answered by Anonymous
19

AnswEr:

We have,

 \\  \qquad \implies \tt 9 {x}^{2}   - 12 + 20 = 0 \\  \\  \\  \implies \tt \: 9 {x}^{2}  - 12x + 4 + 16 = 0 \\  \\  \\  \implies \tt \:  {(3x - 2)}^{2}  + 16 = 0 \\  \\  \\  \implies \tt \:  {(3x - 2)}^{2}  - 16 {i}^{2}  = 0 \\  \\  \\  \implies \tt \: [(3x - 2) + 4i] \:  \: [(3x - 2) - 4i] = 0 \\  \\  \\  \implies \tt \: (3x - 2 + 4i)(3x - 2 - 4i) = 0 \\  \\  \\  \implies \tt \: 3x - 2 + 4i = 0, \: or \:  \: 3x - 2 - 4i = 0 \\  \\  \\  \implies \tt \: 3x = 2 - 4i, \: or \:  \: 3x = 2 + 4i \\  \\  \\  \implies \tt \: x =  \frac{2}{3}  -  \frac{4}{3} i \:  \:  \: or \:  \:  \: x =  \frac{2}{3}  +  \frac{4}{3} i \\  \\  \\  \rm \: Hence, \: the \: roots \: of \: the \: given \: equation \: are \\  \\  \rm \:  \frac{2}{3}  -   \frac{4}{3} i \:  \: and \:  \:  \:  \frac{2}{3}i  +  \frac{4}{3} i

Similar questions