9x2-6b2x -(a4-b4) =0
Factories method
Answers
Answered by
39
Answer:
9x²-6b²x-(a^4-b^4)=0
9x²-3(2b²)x-(a^4-b^4)=0
9x²-3(b²-a²+b²+a²)x+(b^4-a^4)=0
9x²-3(b²-a²)x-3(b²+a²)x+(b²+a²)(b²-a²)=0
3x(3x-b²+a²)-(b²+a²)(3x-b²+a²)=0
(3x-b²-a²)(3x-b²+a²)=0
Explanation: Hope It is Helpfull
Answered by
3
Given,
9x2-6b2x -(a4-b4) =0
To Find,
Factorise
Solution,
9x² - 6b²x - (a^4 - b^4) = 0
9x² - 3(2b²)x - (a^4 - b^4) = 0
9x² - 3(b² - a² + b² - a²)x + (b^4 - a^4) = 0
9x² - 3(b² - a²)x - 3 (b² + a²)x + (b² + a²)(b² - a²) = 0
3x(3x - b² + a²) - (b² + a²)(3x - b² + a²) = 0
(3x - b² - a²)(3x - b² + a²) = 0
So the factorized solution is (3x - b² - a²)(3x - b² + a²) = 0
Similar questions