Chemistry, asked by adwaithsajikumar4111, 6 hours ago

A 0.15 g sample of zinc ore was brought in solution as ZnCl2 and the zinc salt separated and treated with ferrocyanide solution as,
2K4[Fe(CN)6] + 3ZnCl2 K2Zn3[Fe(CN)6]2 + 6KCl
25 ml of 0.01 M ferrocyanide solution was required. Determine percentage of zinc in the ore. (Zn = 65)

Answers

Answered by shaharbanupp
1

Answer:

The percentage of zinc present in the ore is 16.2

Explanation:

The balanced chemical equation is given as,

2\ K_{4}[Fe(CN)_{6}]\ +\ 3\ ZnCl_{2}  →  K_{2} Zn_{3}[Fe(CN)_{6}]_{2} \  +\ 6KCl

Given that,

Mass of Zn ore in solution  = 0.15g

The Molar mass of Zn      =  65\ gmol^{-1}

To find out the %% of Zn ore,

First, find out the number of moles of Zn ore brought in the solution asZnCl_{2},

⇒ no. of moles of Zn ore as ZnCl_{2}     =  \frac{mass\  of \ Zn \ ore\  taken}{Molar\ mass\ of\ ZnCl_{2} }

⇒                                                           = \ \  \frac{0.15}{136}

⇒                                                           =\ \ 1.1029 × 10^{-3}    

Next, find out the number of moles of ferrocyanide solution required

Given that,

Molarity of the solution =\ \ 0.01M

Volume         =\ \ 25ml\ \ =\ \ 25 × 10^{-3}L

Therefore, by using the molarity equation,

No. of moles of ferrocyanide solution   =  M × V_{L}

⇒                                                              =\ \ 0.01\ *\ 25\ *\ 10^{-3}

⇒                                                              =\ \ 2.5\ *\ 10^{-4}\ mol

From the equation, it is clear that,

2 mol of  K_{4}[Fe(CN)_{6}] needs 3 mol of ZnCl_{2}·  SO,

2.5\ *\ 10^{-4} mol of K_{4}[Fe(CN)_{6}] needs  =   \frac{2.5\ *\ 10^{-4\ }*\ 3 }{2}

                                                                 =\ \ 3.75\ *\ 10^{-4} mol of ZnCl_{2}

We know that,

    1 mol of ZnCl_{2}  =  65g of Zn

∴   3.75\ *\ 10^{-4} mol of ZnCl_{2} =\ \ \frac{3.75\ *\ 10^{-4}\ *\ 65 }{1}

⇒                                             =\ \ 0.0243g of Zn

To determine the percentage,

We know that,

     mass %     =\ \ \frac{mass\ of\ the\ solute}{mass\ of\ the\ solution} \ *100

⇒  % of Zn in ore  =\ \ \frac{mass\ of\ the\ Zn}{Total\ mass\ of\ the\ ore} \ *\ 100

⇒                           =\ \ \frac{0.0243}{0.15} \ *100

⇒                           =\ \ 16.2 % of Zn

Hence, the percentage of Zn present in the ore is 16.2 % ·

Answered by Anonymous
1

Given:

  • Mass of Zinc = 0.15 g
  • The molar mass of Zn = 65
  • Balanced Chemical equation:
  • 2K_4[Fe(CN)_{6}]+3ZnCl_2 →→→→ K_{2}Zn_3[Fe(CN)_6]_2
  • Molarity of the ferrocyanide solution  = 0.01 M
  • Volume of ferrocyanide solution (V) = 25 ml = 25*10^{-3}L

To Find:

  • Percentage of Zinc in the ore.

Solution:

  • To find out the percentage of Zinc in the ore first we should find out the number of moles of Zn in the zinc chloride solution.
  • No: of moles of Zn in ZnCl_2 = \frac{Mass of Zn}{Molar mass of ZnCl_2} = \frac{0.15}{136} = 1.102*10^{-3}
  • Finding out the number of moles of ferrocyanide solution,
  • No: of moles of ferrocyanide solution = M*V_L = 0.01*25 * 10^{-3} = 0.25*10^{-3} = 2.5*10^{-4}
  • From the given balanced equation it is clear that 2 moles of K_4[Fe(CN)_6] requires 3 moles of ZnCl_2
  • So we get an equation, No: of moles of K_4[Fe(CN)_6]  =  \frac{2.5*10^{-4}*3 }{2}  = 3.75*10^{-4} mol of Zinc chloride.
  • By the previous step, we can find 1 mol of ZnCl_2 = 65g of Zn
  • So, No: of moles of Zinc Chloride = \frac{3.75*10^{-4}*65 }{1} = 243.75*10^{-4}  = 0.0243 g  of Zn.
  • To Find the percenatge of Zn in the ore we have a formula,
  • mass percentage = \frac{mass of solute}{mass of solution} *100 = \frac{0.0243}{0.15}*100 = 0.162*100 = 16.2%
  • Mass percentage = 16.2%

The percentage of Zn in the ore = 16.2%

Similar questions