Math, asked by aryaniyappan2006, 10 months ago

A (-1, 1), B (1, 3) and C (3, a) are points and if AB = BC, then find 'a'.​
the answer will be marked as brainliest

Answers

Answered by Anonymous
10

 \huge \red{\bf{solution}} \\  \\ given \: that \\ A \: ( - 1, \: 1)  \:,   \: \: B(1, \: 3) \:  \:,  \: C(3 ,\: a) \\  \\ A.T.Q \:  \\  \implies \: AB = BC  \: ........(1) \\  \\ firstly \: find \: distance \: of\: A \: B \\  \\AB  \implies \: \sqrt{ {(1 +1)}^{2}+{(3-1)}^{2} }  \\  \\ AB \implies \:  \sqrt{ 8 }  \\  \\ now \: find \: distance \: of \: BC \\  \\  BC \implies \:  \sqrt{ {(3 - 1)}^{2} +  {(a - 3)}^{2}  }  \\  \\ BC \implies \:   \sqrt{4 +  {(a - 3)}^{2} }  \\ from \: equation \: (1)    \\ \\ \implies \:  AB = BC \\  \\  \implies \:  \sqrt{8}  =  \sqrt{4 +  {(a - 3)}^{2} }  \\ taking \: square \: on \: both \: side \\  \\ \implies \:  8 = 4 +  {a}^{2}  + 9 - 6a \\ \\   \implies \:  {a}^{2}  - 6a + 5 \\  \\ here \: a \: has \: two \: values \:  \\  \\ (a - 1)(a - 5) \\  \\\boxed{ a = 1 ,\: 5}\\ \\ here \:we\:used\: distance \: formula

Answered by rishu6845
9

Step-by-step explanation:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions