Math, asked by jassisidhu1, 1 year ago

A(-1,-1),B(6,1)C(8,8)D(x,y) are the four vertices of a rhombus taken in order. find co-ordinates of point D.

Answers

Answered by mysticd
7

 \underline { \pink { First \: method : }}

 Given \: A(-1,-1) = (x_{1},y_{1}) , \\B(6,1) = (x_{2},y_{2}),\:C(8,8) = (x_{3},y_{3}) \\and \:D(x,y) \:are \: vertices \:of \:a \: Rhombus.

 x = x_{1} + x_{3} - x_{2} \\= -1 + 8 - 6 \\= -7 + 8 \\= 1

 y = y_{1} + y_{3} - y_{2} \\= -1 + 8 - 1 \\= -2 + 8 \\= 6

Therefore.,

 \red{ Co-ordinates \:of \:point \:D(x,y) }\\\green {= (1,6) }

 \underline { \pink { Second \: method : }}

 In \: a \:Rhombus , \\Mid-point \: AC \\= Mid-point \:of \: diagonal \:BD

 \implies \Big( \frac{x+x_{2}}{2} , \frac{y_+y_{2}}{2}\Big) \\= \Big( \frac{x_{1}+x_{3}}{2} , \frac{y_{1}+y_{3}}{2}\Big)

 \implies \Big( \frac{x+6}{2}, \frac{y+1}{2}\Big) = \Big( \frac{-1+8}{2}, \frac{-1+8}{2}\Big)

 \implies \Big( \frac{x+6}{2}, \frac{y+1}{2}\Big) = \Big( \frac{7}{2}, \frac{7}{2}\Big)

 Now, i ) \frac{x+6}{2} = \frac{7}{2} \\\implies x + 6 = 7 \\\implies x = 7-6 \\\implies x = 1

 Now, ii) \frac{y+1}{2} = \frac{7}{2} \\\implies y+ 1 = 7 \\\implies y = 7-1 \\\implies y = 6

Therefore.,

 \red{ Co-ordinates \:of \:point \:D(x,y) }\\\green {= (1,6) }

•••♪

Attachments:
Answered by LostEssence
0

Answer:

Firstmethod:

\begin{gathered}Given \: A(-1,-1) = (x_{1},y_{1}) , \\B(6,1) = (x_{2},y_{2}),\:C(8,8) = (x_{3},y_{3}) \\and \:D(x,y) \:are \: vertices \:of \:a \: Rhombus.\end{gathered}

GivenA(−1,−1)=(x

1

,y

1

),

B(6,1)=(x

2

,y

2

),C(8,8)=(x

3

,y

3

)

andD(x,y)areverticesofaRhombus.

\begin{gathered}x = x_{1} + x_{3} - x_{2} \\= -1 + 8 - 6 \\= -7 + 8 \\= 1\end{gathered}

x=x

1

+x

3

−x

2

=−1+8−6

=−7+8

=1

\begin{gathered}y = y_{1} + y_{3} - y_{2} \\= -1 + 8 - 1 \\= -2 + 8 \\= 6\end{gathered}

y=y

1

+y

3

−y

2

=−1+8−1

=−2+8

=6

Therefore.,

\begin{gathered}\red{ Co-ordinates \:of \:point \:D(x,y) }\\\green {= (1,6) }\end{gathered}

Co−ordinatesofpointD(x,y)

=(1,6)

\underline { \pink { Second \: method : }}

Secondmethod:

\begin{gathered}In \: a \:Rhombus , \\Mid-point \: AC \\= Mid-point \:of \: diagonal \:BD\end{gathered}

InaRhombus,

Mid−pointAC

=Mid−pointofdiagonalBD

\begin{gathered}\implies \Big( \frac{x+x_{2}}{2} , \frac{y_+y_{2}}{2}\Big) \\= \Big( \frac{x_{1}+x_{3}}{2} , \frac{y_{1}+y_{3}}{2}\Big)\end{gathered}

⟹(

2

x+x

2

,

2

y

+

y

2

)

=(

2

x

1

+x

3

,

2

y

1

+y

3

)

\implies \Big( \frac{x+6}{2}, \frac{y+1}{2}\Big) = \Big( \frac{-1+8}{2}, \frac{-1+8}{2}\Big)⟹(

2

x+6

,

2

y+1

)=(

2

−1+8

,

2

−1+8

)

\implies \Big( \frac{x+6}{2}, \frac{y+1}{2}\Big) = \Big( \frac{7}{2}, \frac{7}{2}\Big)⟹(

2

x+6

,

2

y+1

)=(

2

7

,

2

7

)

\begin{gathered}Now, i ) \frac{x+6}{2} = \frac{7}{2} \\\implies x + 6 = 7 \\\implies x = 7-6 \\\implies x = 1\end{gathered}

Now,i)

2

x+6

=

2

7

⟹x+6=7

⟹x=7−6

⟹x=1

\begin{gathered}Now, ii) \frac{y+1}{2} = \frac{7}{2} \\\implies y+ 1 = 7 \\\implies y = 7-1 \\\implies y = 6\end{gathered}

Now,ii)

2

y+1

=

2

7

⟹y+1=7

⟹y=7−1

⟹y=6

Therefore.,

\begin{gathered}\red{ Co-ordinates \:of \:point \:D(x,y) }\\\green {= (1,6) }\end{gathered}

Co−ordinatesofpointD(x,y)

=(1,6)

Similar questions