Math, asked by midhatultazim, 2 months ago

A = [1 3 2 5]
Find A-1 using Cayley -Hamilton theorem.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Cayley Hamilton Theorem states that

  • Every square matrix 'A' satisfy its characteristic equation where characteristic equation is given by

 \sf \:  |A -  \lambda \: I|  = 0

Now,

Given matrix,

\rm :\longmapsto\:A = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix}

So,

\rm :\longmapsto\:A - \lambda \:I = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} - \lambda \:\: \begin{bmatrix} 1 &  0\\ 0 & 1\end{bmatrix}

\rm :\longmapsto\:A - \lambda \:I = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} - \:\: \begin{bmatrix} \lambda \: &  0\\ 0 & \lambda \:\end{bmatrix}

\rm :\longmapsto\:A - \lambda \:I = \: \begin{bmatrix} 1 - \lambda \: &  3\\ 2 & 5 - \lambda \:\end{bmatrix}

So,

\rm :\longmapsto\:|A -  \lambda \: I| = (1 - \lambda \:)(5 - \lambda \:) - 6

\rm :\longmapsto\:|A -  \lambda \: I| =5 - \lambda \: - 5\lambda \: +  {\lambda \:}^{2}  - 6

\rm :\longmapsto\:|A -  \lambda \: I| = {\lambda \:}^{2} - 6\lambda \:  - 1

Now, Cayley Hamilton Theorem states A must satisfy its characteristic equation,

So, we have to verify that,

\rm :\longmapsto\: {A}^{2}  - 6A - I = 0

Now, Consider

\rm :\longmapsto\: {A}^{2}  = A \times A = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} \times \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix}

 \sf \:  \:  \:  =  \:  \:  \: \: \begin{bmatrix} 1 + 6 &  3 + 15\\ 2 + 10 & 6 + 25\end{bmatrix}

 \sf \:  \:  \:  =  \:  \:  \: \: \begin{bmatrix} 7 &  18\\ 12 & 31\end{bmatrix}

Now,

Consider,

\rm :\longmapsto\: {A}^{2}  - 6A - I

 \sf \:  \:  \:  =  \:  \:  \: \: \begin{bmatrix} 7 &  18\\ 12 & 31\end{bmatrix} - 6\: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} - \: \begin{bmatrix} 1 &  0\\ 0 & 1\end{bmatrix}

 \sf \:  \:  \:  =  \:  \:  \: \: \begin{bmatrix} 7 &  18\\ 12 & 31\end{bmatrix} - \: \begin{bmatrix} 6 &  18\\ 12 & 30\end{bmatrix} - \: \begin{bmatrix} 1 &  0\\ 0 & 1\end{bmatrix}

 \sf \:  \:  \:  =  \:  \:  \: \: \begin{bmatrix} 0 &  0\\ 0 & 0\end{bmatrix}

\bf\implies \: {A}^{2}  - 6A - I = 0

Now, to find inverse of matrix A,

 \boxed{ \bf \: Pre - multiply \:  {A}^{ - 1}  \: on \: both \: sides}

\rm :\longmapsto\: {A}^{ - 1} {A}^{2}   - 6 {A}^{ - 1} A -  {A}^{ - 1} I = 0

\rm :\longmapsto\:A - 6I -  {A}^{ - 1}  = 0

\rm :\longmapsto\: {A}^{ - 1}  = A - 6I

\rm :\longmapsto\: {A}^{ - 1}  = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} - 6\: \begin{bmatrix} 1 &  0\\ 0 & 1\end{bmatrix}

\rm :\longmapsto\: {A}^{ - 1}  = \: \begin{bmatrix} 1 &  3\\ 2 & 5\end{bmatrix} - \: \begin{bmatrix} 6 &  0\\ 0 & 6\end{bmatrix}

\rm :\longmapsto\: {A}^{ - 1}  = \: \begin{bmatrix}  - 5 &  3\\ 2 &  - 1\end{bmatrix}

\boxed{\bf \: Hence \:  \: \: {A}^{ - 1}  = \: \begin{bmatrix}  - 5 &  3\\ 2 &  - 1\end{bmatrix}}

Similar questions