Math, asked by goyalananya343, 9 months ago

a+1/a=2 find a⁴+1/a² and a⁸+1/a⁴​

Answers

Answered by Anonymous
2

Answer:

\sf{1. \ The \ value \ of \ a^{4}+\dfrac{1}{a^{2}} \ is \ 2.}

\sf{2. \ The \ value \ of \ a^{8}+\dfrac{1}{a^{4}} \ is \ 2.}

Given:

\sf{\leadsto{a+\dfrac{1}{a}=2}}

To find:

\sf{The \ value \ of \ a^{4}+\dfrac{1}{a^{2}} \ and \ a^{8}+\dfrac{1}{a^{8}}.}

Solution:

\sf{a+\dfrac{1}{a}=2}

\sf{\therefore{\dfrac{a^{2}+1}{a}=2}}

\sf{\therefore{a^{2}+1=2a}}

\sf{\therefore{a^{2}-2a+1=0}}

\sf{\therefore{a^{2}-a-a+1=0}}

\sf{\therefore{a(a-1)-1(a-1)=0}}

\sf{\therefore{(a-1)(a-1)=0}}

\sf{\therefore{a=1 \ or \ 1}}

\sf{Hence, \ the \ value \ of \ a \ is \ 1.}

\sf{\leadsto{a^{4}+\dfrac{1}{a^{2}}}}

\sf{But, \ a=1}

\sf{\leadsto{1^{4}+\dfrac{1}{1^{2}}}}

\sf{\leadsto{1+1}}

\sf{\leadsto{2}}

\sf{The \ value \ of \ a^{4}+\dfrac{1}{a^{2}} \ is \ 2.}

_____________________________________

\sf{\leadsto{a^{8}+\dfrac{1}{a^{4}}}}

\sf{But, \ a=1}

\sf{\leadsto{1^{8}+\dfrac{1}{1^{4}}}}

\sf{\leadsto{1+1}}

\sf{\leadsto{2}}

\sf\purple{\tt{\therefore{The \ value \ of \ a^{8}+\dfrac{1}{a^{4}} \ is \ 2.}}}

Similar questions