Math, asked by Vmallikarjuna9436, 16 days ago

a+1/a=2 then a^(3)+1/a^(4)=?

Answers

Answered by ajr111
10

Answer:

2

Step-by-step explanation:

Appropriate Question :

If  \mathrm{a + \dfrac{1}{a} = 2} then, \mathrm{a^3+\dfrac{1}{a^3}} = ?

Solution :

Given that,

\longmapsto \mathrm{a + \dfrac{1}{a} = 2}

Cubing that on both sides,

we know that,

\boxed{\mathrm{(x+y)^3 = x^3+3x^2y+3xy^2+y^3}}

Here, x = a ; y = 1/a

\implies \mathrm{\bigg(a + \dfrac{1}{a}\bigg)^3 = 2^3}

\implies \mathrm{a^3+3a^{\not2}.\dfrac{1}{\not a} + 3\not a.\dfrac{1}{a^{\not 2}} + \dfrac{1}{a^3} = 8}

\implies \mathrm{a^3 + 3\bigg(a + \dfrac{1}{a}\bigg)+\dfrac{1}{a^3} = 8}

As it is given, \mathrm{a + \dfrac{1}{a} = 2}

Substituting that, we get,

\implies \mathrm{a^3 + 3(2)+\dfrac{1}{a^3} = 8}

\implies \mathrm{a^3 +\dfrac{1}{a^3} = 8-6}

\implies \mathrm{a^3+\dfrac{1}{a^3} = 2}

Thus,

\bigg|\overline{\underline{\boxed{\mathbf{a^3 + \dfrac{1}{a^3} = 2}}}}\bigg|

Hope it helps!!

Similar questions