Math, asked by alyssaparkcheon, 3 months ago

a-1/a=3

find a^2+3a+1/a^2-3a

Answers

Answered by divyachawla1985
0

Answer:

squaring both sides

a2 + 1/a2-2=9

a2+1/a2=9+2

a2+1/a2=11

Therefore 3a gets cancelled by 3a

answer is 11

Answered by Anonymous
7

Given

 \sf \to \bigg(a -  \dfrac{1}{a}  \bigg) = 3

To find the value of

 \sf \to \:  {a}^{2}  + 3a +  \dfrac{1}{ {a}^{2} }  - 3a

 \sf \to \:  {a}^{2}  +  \cancel{3a} +  \dfrac{1}{ {a}^{2} }    - \cancel{ 3a}

 \sf \to \:  {a}^{2}   +  \dfrac{1}{ {a}^{2} }

So We have to find the value of

 \sf \to \:  {a}^{2}   +  \dfrac{1}{ {a}^{2} }

So Now take

\sf \to \bigg(a -  \dfrac{1}{a}  \bigg) = 3

Squaring on both side

\sf \to \bigg(a -  \dfrac{1}{a}  \bigg) ^{2}  = (3) {}^{2}

Use this identities

 \sf \to(a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Now

 \sf \to {a}^{2}   +  \dfrac{1}{ {a}^{2} }  - 2 \times a \times  \dfrac{1}{a}  = 9

 \sf \to {a}^{2}   +  \dfrac{1}{ {a}^{2} }  - 2  = 9

\sf \to {a}^{2}   +  \dfrac{1}{ {a}^{2} }     = 9 + 2

\sf \to {a}^{2}   +  \dfrac{1}{ {a}^{2} }     = 11

Answer

\sf \to {a}^{2}   +  \dfrac{1}{ {a}^{2} }     = 11

Similar questions