Math, asked by chithrabasker1971, 8 months ago

a+ 1/a = 34 then✓ a +1/✓ a = ?​

Answers

Answered by Anonymous
1

GIVEN :-

  • \rm{a+\dfrac{1}{a}= 34}

TO FIND :-

  • \rm{\sqrt{a} +\dfrac{1}{\sqrt{a}}}

IDENTITY USED:-

  • {\boxed{\blue{\red{ (a+b)^2= a^2+b^2+2ab}}}}

Now,

\implies\rm{(\sqrt{a}+\dfrac{1}{\sqrt{a}})^2= (\sqrt{a})^2+(\dfrac{1}{\sqrt{a}})^2+2\times{\sqrt{a}}\times{\dfrac{1}{\sqrt{a}}}}

\implies\rm{(\sqrt{a}+\dfrac{1}{\sqrt{a}})^2= a+\dfrac{1}{a} + 2}

\implies\rm{(\sqrt{a}+\dfrac{1}{\sqrt{a}})^2 = 34 +2}

\implies\rm{(\sqrt{a}+\dfrac{1}{\sqrt{a}})^2 = 36}

\implies\rm{(\sqrt{a}+\dfrac{1}{\sqrt{a}})^2 = \sqrt{36}}

\implies\rm{\sqrt{a}+\dfrac{1}{\sqrt{a}} = 6}

Hence , The value of \rm{\sqrt{a} +\dfrac{1}{\sqrt{a}}} is 6.

\boxed{\begin{minipage}{5cm}\\ \\   \sf\bf{(a-b)^2 =$ \tt a^2+b^2-2ab $}\\ \\  \tt\bf{a^3+b^3=$ \tt (a+b) (a^2+ab+b^2) $}\\ \\ \rm\bf{a^3-b^3= $ \tt (a-b) (a^2+ab+b^2)$}\end{minipage}}

Similar questions