A+1/a=6 .find the value of a^4+1/a^4
Answers
Answered by
7
Question:
If a + 1/a = 6 , then find the value of :
a^4 + 1/a^4.
Note:
(x+y)^2 = x^2 + y^2 + 2•x•y
Solution:
We have;
a + 1/a = 6 ---------(1)
We know that;
(x+y)^2 = x^2 + y^2 + 2•x•y
Thus;
=> (a +1/a)^2 = a^2 + 1/a^2 + 2•a•(1/a)
=> (6)^2 = a^2 + 1/a^2 + 2
{ using eq-(1) }
=> 36 = a^2 + 1/a^2 + 2
=> a^2 + 1/a^2 = 36 - 2
=> a^2 + 1/a^2 = 34 -----------(2)
Again;
=> (a^2 +1/a^2) = a^4 + 1/a^4
+ 2•(a^2)•(1/a^2)
=> (34)^2 = a^4 + 1/a^4 + 2
{ using eq-(2) }
=> 1156 = a^4 + 1/a^4 + 2
=> a^4 + 1/a^4 = 1156 - 2
=> a^4 + 1/a^4 = 1154
Hence,
The required value of x^4 + 1/x^4 is;
1154.
Anonymous:
Great
Answered by
3
Answer:-
Step - by - step explanation:-
To find :-
Formula used :-
Solution :-
According to the question→
Hope it helps you.
Similar questions