Math, asked by kithaganigmailcom, 11 months ago

A+1/a=6 .find the value of a^4+1/a^4​

Answers

Answered by Anonymous
7

Question:

If a + 1/a = 6 , then find the value of :

a^4 + 1/a^4.

Note:

(x+y)^2 = x^2 + y^2 + 2•x•y

Solution:

We have;

a + 1/a = 6 ---------(1)

We know that;

(x+y)^2 = x^2 + y^2 + 2•x•y

Thus;

=> (a +1/a)^2 = a^2 + 1/a^2 + 2•a•(1/a)

=> (6)^2 = a^2 + 1/a^2 + 2

{ using eq-(1) }

=> 36 = a^2 + 1/a^2 + 2

=> a^2 + 1/a^2 = 36 - 2

=> a^2 + 1/a^2 = 34 -----------(2)

Again;

=> (a^2 +1/a^2) = a^4 + 1/a^4

+ 2•(a^2)•(1/a^2)

=> (34)^2 = a^4 + 1/a^4 + 2

{ using eq-(2) }

=> 1156 = a^4 + 1/a^4 + 2

=> a^4 + 1/a^4 = 1156 - 2

=> a^4 + 1/a^4 = 1154

Hence,

The required value of x^4 + 1/x^4 is;

1154.


Anonymous: Great
Anonymous: Great Answer : )
Answered by Anonymous
3

Answer:-

 \implies \: \boxed{  \bf{ {a}^{4}  +  \frac{1}{ {a}^{4} }  = 1154}}

Step - by - step explanation:-

To find :-

 \implies \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  =  \\

Formula used :-

  \star \:  \boxed{\bf{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy }}

Solution :-

According to the question

 \bf{ \rightarrow \: a +  \frac{1}{a}   = 6} \\ \\   \red{ \bf{squaring \: on \: both \: sides \: }} \\  \\  \rightarrow \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{2}  =  {(6)}^{2}  \\  \\   \bf{using \: the \: given \: formula \: } \\  \\  \: \rightarrow \:  \bf{ {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 \times a \times  \frac{1}{a}  = 36} \\  \\  \rightarrow \:  \bf{ {a}^{2}  +  \frac{1}{ {a}^{2} }  = 36 - 2} \\  \\  \rightarrow \: \bf{  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 34} \\  \\ \green{ \bf{ again \: squaring \: on \: both \: sides}} \\  \\  \rightarrow \:  \bf{ { \bigg( {a}^{2}  +  \frac{1}{ {a}^{2} }  \bigg)}^{2}  =  {(34)}^{2} } \\  \\   \pink{\bf{ again \: using \: the \: given \: formula}}   \rightarrow  \:  \bf{{a}^{4}  +  \frac{1}{ {a}^{4} }  + 2 \times  {a}^{2}  \times  \frac{1}{ {a}^{2} }  = 1156} \\  \\  \rightarrow \:  \bf{ {a}^{4}  +  \frac{1}{ {a}^{4}} = 1156 - 2  } \\  \\  \rightarrow \:  \boxed{ \bf{ {a}^{4}  +  \frac{1}{ {a}^{4} }  = 1154}}

Hope it helps you.


Anonymous: Nice : )
Similar questions