Math, asked by ragh000e, 1 year ago

(a-1/a)(a+1/a)(a²+1/a²)(a power 4+1/a power 4)

Answers

Answered by BhawnaAggarwalBT
0

(a -  \frac{1}{a} )(a +  \frac{1}{a} )( {a}^{2}  +  {( \frac{1}{a} )}^{2} )( {a}^{4}  +  {( \frac{1}{a} )}^{4} )

( {a}^{2} -  { \frac{1}{a} }^{2} )( {a}^{2}  +  { \frac{1}{a} }^{2} )( {a}^{4}  +  \frac{1}{a}^{4} )

 {( {a}^{2}) }^{2}  -  {( { \frac{1}{a} }^{2}) }^{2}( {a}^{4}   +  { \frac{1}{a} }^{4}) \\  \\  ( {a}^{4}  -  { \frac{1}{a} }^{4} )( { {a}^{4} }  +  { \frac{1}{a} }^{4} )

( { {a}^{4} )}^{2}  -  {( { \frac{1}{a} }^{4}) }^{2}  \\  \\ so \: final \: answer \: is \:  \\  \\  {a}^{8}  -  {( \frac{1}{a}) }^{8}

here is your answer
hope this helps you plz mark as brainliest answer plzzzzz plzzzzzzzzzzzzz mark as brainliest answer plzzzzz

Answered by JeanaShupp
0

Answer: (a^8-\frac{1}{a^8})

Step-by-step explanation:

Given expression: (a-\frac{1}{a})(a+\frac{1}{a})(a^2+\frac{1}{a^2})(a^4+\frac{1}{a^4})

Since, we know that  (a+b)(a-b)=(a^2-b^2)

Therefore, we get

(a-\frac{1}{a})(a+\frac{1}{a})(a^2+\frac{1}{a^2})(a^4+\frac{1}{a^4})\\\\=(a^2-\frac{1}{a^2})(a^2+\frac{1}{a^2})(a^4+\frac{1}{a^4})..........[Since,\ (a-\frac{1}{a})(a+\frac{1}{a})=(a^2-\frac{1}{a^2})]\\\\=(a^4-\frac{1}{a^4})(a^4+\frac{1}{a^4})..........[Since,\ (a^2-\frac{1}{a^2})(a^2+\frac{1}{a^2})=(a^4-\frac{1}{a^4})]\\\\=((a^4)^2-\frac{1}{(a^4)^2})\\\\=(a^8-\frac{1}{a^8})

Hence, (a-\frac{1}{a})(a+\frac{1}{a})(a^2+\frac{1}{a^2})(a^4+\frac{1}{a^4})=(a^8-\frac{1}{a^8})

Similar questions