Chemistry, asked by Poojayamakanmarde, 1 year ago

A 1st order reaction is carried out with an initial concentration of 10 mol per liter and 80%of the reactant is changes into product .now if the same reaction is carried ot wih an initial concentration of 5 mol per liter for the same period the percentage of the reactant changing into product is?

Answers

Answered by Anonymous
107

Solution:

Order of the reaction = 1

Case - 1

\sf{\implies k = \dfrac{2.303}{t} \log_{10} \Bigg(\dfrac{100}{100-80}\Bigg)}

\sf{\implies k = \dfrac{2.303}{t} \log_{10}\Bigg(\dfrac{10}{2}\Bigg)}

\sf{\implies \dfrac{2.303}{t} \times 0.70\;\;\;\;.........(1)}

Case - 2

\sf{\implies k = \dfrac{2.303}{t} \log_{10} \Bigg(\dfrac{5}{x}\Bigg)}

\sf{\implies k = \dfrac{2.303}{t} \Big[\log_{10}5-\log_{10}x\Big]}

\sf{\implies \dfrac{2.303}{t}\Big[0.70-\log_{10}x\Big]\;\;\;\;........(2)}

Dividing Eq (1) by Eq (2),

\sf{\implies \dfrac{k}{k}=\dfrac{\dfrac{2.303 \times [0.70]}{t}}{\dfrac{2.303 \times [0.70-\log_{10}x]}{t}}}

\sf{\implies 1 = \dfrac{0.70}{0.70-\log_{10}x}}

On solving it we get,

\sf{\implies \log_{10}x = 0}

\sf{\implies x = Anti \log 0} \\ \\ \sf{\implies x = 1}

Now, keeping x = 1 in eq(2), we analyse that Eq (1) = Eq (2). Hence % of reactant changing to product will be same i.e 80%.

Answered by BrainlyConqueror0901
87

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Order\:of\:reaction=1}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \bold{First\:case:}\\\implies k =  \frac{2.303}{t}  log_{10}( \frac{100}{100 - 8} ) \\  \\  \implies k =  \frac{2.303}{t}  log_{10}( \frac{10}{2} ) \\  \\  \implies k =  \frac{2.303}{t}  \times 0.7 -  -  -  -  - (1) \\  \\  \bold{Second\:case:} \\   \implies k = \frac{2.303}{t}  log_{10}(\frac{5}{x} ) \\  \\  \implies k =  \frac{2.303}{t}  (log_{10}5 -  log_{10}x) \\  \\  \implies k =  \frac{2.303}{t} (0.7 -  log_{10}x) -  -  -  -  - (2) \\  \\   \bold{dividing \: (1) \: and \: (2)} \\  \\  \implies  \frac{ \cancel k}{ \cancel k}  =  \frac{ \frac{2.303 \times (0.7)}{ \cancel t} }{ \frac{2.303 \times (0.7 -  log_{10}x)}{ \cancel t} }  \\  \\  \implies 1 =  \frac{0.7}{0.7 -  log_{10}x}  \\  \\  \implies  log_{10}x = 0 \\  \\  \implies x =   {10}^{0}  \\  \\   \bold{\implies  x = 1}

Similar questions