Math, asked by RAJIVJAIN7076, 1 year ago

A (2, 3), B (-2, 1) and C (4, -3) are the vertices of ΔABC. Find the slope of
(i) side AB
(ii) altitude through A
(iii) median through A
(iv) perpendicular bisector of AB.

Answers

Answered by Anonymous
4

Formula of slope

We know that formula of slope (between x1,y1 and x2,y2 ) is :

( y2 - y1 ) / ( x2 - x1 )                                                      

Slope of AB

Side AB slope = ( y2 - y1 ) / ( x2 - x1 )    

                        = ( 1 - 3 ) / ( 2 + 2 )

                        = - 2 / 4

                        = - 1 / 2

Slope = - 1/2


Altitude through A

Slope of BC = ( y2 - y1 ) / ( x2 - x1 )    

                    = ( 1 + 3 ) / ( -2 - 4 )

                    = - 4 / 6

                    = -2 / 3

Slope of BC's altitude = - 1/ slop of BC

                                    = -1/2/3

                                    = 3/2

Slope = 3/2

Median through A.

Median divides through A divides the opposite side BC

Midpoint of BC  = ( x1` + x2 ) / 2 , ( y1 + y2 ) / 2 [ Midpoint formula ]

                          = ( 4 - 2 ) / 2 , ( - 3 + 1 ) / 2

                          = 2/2 , -2/2

                          = 1 , - 1

Slope of the median = ( y2 - y1 ) / ( x2 - x1 )    

                                  = ( -1 - 3 ) / ( 1 - 2 )

                                  = - 4/-1

                                  = 4

Slope = 4

Bisector of AB

Slope of bisector = - 1/ slope of AB

                             = - 1 / -1/2

                             = 2

Slope = 2


Hope it helps :)

____________________________________________________________________

Similar questions