A^2+√3a-5 =0 then find the value of( a-√3)^3+1\(a-√3)^3
Answers
Answered by
0
Answer:
3a - 3/a - 3 = 0
=> 3a² -3 -3a = 0
=> a = {3 +- √(9+36)}/6
=> a= (3+-3√5)/6
=> a = (1+-√5)/2 ………. (1)
So, 1/a = 2/(1+-√5)
We, rationalize the denominator first by taking 1+√5 & then by 1-√5 . In both the cases .. value of (a-1/a) will be the same
2/(1+√5) = 2(1-√5) / (1+√5)(1-√5)
= 2(1-√5) / -4
=> 1/a = (1-√5) / -2 …………….. (2)
By (1) & (2)
(a- 1/a)
= (1+√5)/2 - (1-√5)/-2
= {(1+√5 + ( 1 -√5)} /2
= 2/2 = 1
=> ( a- 1/a) = 1 ………. (3)
Now, using identity
x^3 - y^3 = (x-y)^3 +3 xy ( x-y)
We get, a^3 - 1/a^3 + 2
= ( a- 1/a)^3 + 3(a- 1/a) + 2
By putting the value of (a- 1/a) in the above expression , by …(3)
we get, 1 + 3 + 2
= 6
Step-by-step explanation:
I hope it helps you
Similar questions