a ^(2) - 4a + 3 + 2 b - b^(2)
Akhil2922:
what we have to find???
Answers
Answered by
0
a(a-4)+3+b(2-b)
=a(a-4)+b(2-b)+3
Hope it helps u☺️☺️
=a(a-4)+b(2-b)+3
Hope it helps u☺️☺️
Answered by
0
Let other factor of the given quadratic expression be a+c.
So, (a+c)(a+b-3) = a2−4a+(3−2b−b2)a2−4a+(3−2b−b2)
⇒ a2+a(b−3+c)+c(b−3)=a2−4a+(3−2b−b2)⇒ a2+a(b−3+c)+c(b−3)=a2−4a+(3−2b−b2)
Comparing the coefficient of 'a' on both the sides:
b+c -3 = -4
c = -1-b
Remember c is the specific value of 'a'.
Clearly, a=−c=1+ba=−c=1+b is the other root.
So, (a+c)(a+b-3) = a2−4a+(3−2b−b2)a2−4a+(3−2b−b2)
⇒ a2+a(b−3+c)+c(b−3)=a2−4a+(3−2b−b2)⇒ a2+a(b−3+c)+c(b−3)=a2−4a+(3−2b−b2)
Comparing the coefficient of 'a' on both the sides:
b+c -3 = -4
c = -1-b
Remember c is the specific value of 'a'.
Clearly, a=−c=1+ba=−c=1+b is the other root.
Similar questions