A^2 - B^2 = 9×11 find the value of A and B?
Answers
Answered by
3
<< HEY MATE HERE'S YOUR ANSWER>>
Answered Jan 28, 2016
a + b = 3
a^2 + b^2 = 7
(a + b)^2 = a^2 + 2ab + b^2
Therefore, 2ab = (a + b)^2 - (a^2 + b^2)
Substituting the given values:
2ab = 3^2 - 7
2ab = 9 - 7
2ab = 2
ab = 2/2
ab = 1
Hence, axb = 1
HOPE IT HELPS
PLZ MRK AS BRAINLIST
Answered Jan 28, 2016
a + b = 3
a^2 + b^2 = 7
(a + b)^2 = a^2 + 2ab + b^2
Therefore, 2ab = (a + b)^2 - (a^2 + b^2)
Substituting the given values:
2ab = 3^2 - 7
2ab = 9 - 7
2ab = 2
ab = 2/2
ab = 1
Hence, axb = 1
HOPE IT HELPS
PLZ MRK AS BRAINLIST
pratyush4211:
wrong
Answered by
27
a²-b²=9×11
Here Your answer✍️
Identity=a²-b²=(a+b)( a-b)
Let on this Identity
Let (a+b)=11
(a-b)=9
Use Substitution formula
Equation 1.=(a+b)=11
Equation 2.=(a-b)=9
Add both equation
a+b=11
+a-b=+9 (+b -b wiil be cut)
2a=20
a=20/2
a=10
Using equation one
a+b=11
10+b=11
B=11-10
B=1
A=10
B=1
Here Your answer✍️
Identity=a²-b²=(a+b)( a-b)
Let on this Identity
Let (a+b)=11
(a-b)=9
Use Substitution formula
Equation 1.=(a+b)=11
Equation 2.=(a-b)=9
Add both equation
a+b=11
+a-b=+9 (+b -b wiil be cut)
2a=20
a=20/2
a=10
Using equation one
a+b=11
10+b=11
B=11-10
B=1
A=10
B=1
Similar questions