English, asked by malatisinha49, 4 months ago


(a^2 + b^2) (a^2– b^2) + (b^2 + c^2) (b^2 – c^2) + 2c^2(c^2– a^2) = (c^2 - a^2)^2​

Answers

Answered by police1249
1

Answer:

Now, this can be rearranged and factored.

$(a^2 - 2ab + b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc + c^2) = 14$

$(a - b)^2 + (a - c)^2 + (b - c)^2 = 14$

$a$, $b$, and $c$ are all integers, so the three terms on the left side of the equation must all be perfect squares. We see that the only is possibility is $14 = 9 + 4 + 1$.

$(a-c)^2 = 9 \Rightarrow a-c = 3$, since $a-c$ is the biggest difference. It is impossible to determine by inspection whether $a-b = 1$ or $2$, or whether $b-c = 1$ or $2$.

We want to solve for $a$, so take the two cases and solve them each for an expression in terms of $a$. Our two cases are $(a, b, c) = (a, a-1, a-3)$ or $(a, a-2, a-3)$. Plug these values into one of the original equations to see if we can get an integer for $a$.

$a^2 - (a-1)^2 - (a-3)^2 + a(a-1) = 2011$, after some algebra, simplifies to $7a = 2021$. $2021$ is not divisible by $7$, so $a$ is not an integer.

The other case gives $a^2 - (a-2)^2 - (a-3)^2 + a(a-2) = 2011$, which simplifies to $8a = 2024$. Thus, $a = 253$ and the answer is 253

Explanation:

brainliest answer


malatisinha49: well even if i didnt undersyand to what you wrote still o am giving the t as the brainloest answer and yeah thanks
malatisinha49: sorry i cannot becuz only you gave me the answer
Similar questions
Math, 2 months ago