(a^2 + b^2) (a^2– b^2) + (b^2 + c^2) (b^2 – c^2) + 2c^2(c^2– a^2) = (c^2 - a^2)^2
Answers
Answer:
Now, this can be rearranged and factored.
$(a^2 - 2ab + b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc + c^2) = 14$
$(a - b)^2 + (a - c)^2 + (b - c)^2 = 14$
$a$, $b$, and $c$ are all integers, so the three terms on the left side of the equation must all be perfect squares. We see that the only is possibility is $14 = 9 + 4 + 1$.
$(a-c)^2 = 9 \Rightarrow a-c = 3$, since $a-c$ is the biggest difference. It is impossible to determine by inspection whether $a-b = 1$ or $2$, or whether $b-c = 1$ or $2$.
We want to solve for $a$, so take the two cases and solve them each for an expression in terms of $a$. Our two cases are $(a, b, c) = (a, a-1, a-3)$ or $(a, a-2, a-3)$. Plug these values into one of the original equations to see if we can get an integer for $a$.
$a^2 - (a-1)^2 - (a-3)^2 + a(a-1) = 2011$, after some algebra, simplifies to $7a = 2021$. $2021$ is not divisible by $7$, so $a$ is not an integer.
The other case gives $a^2 - (a-2)^2 - (a-3)^2 + a(a-2) = 2011$, which simplifies to $8a = 2024$. Thus, $a = 253$ and the answer is 253
Explanation:
brainliest answer