a^2 + b^2 + c^2, whan a + b + c = m and ab + bc + ca = n
Answers
Answered by
1
Answer:
m²-2n
Step-by-step explanation:
Ok, Nice question
As we know that,
(a+b+c)² = a²+b²+c²+2(ab+bc+ca)
Now putting the value of the in the question
(a+b+c)² = a²+b²+c²+2(ab+bc+ca)
→(m)² = a²+b²+c²+2(n)
→m² = a²+b²+c² + 2n
→a²+b²+c²=m²-2n
Answered by
46
Step-by-step explanation:
Solution :
Given,
a + b + c = m and ab + bc + ca = n
We know that,
a² + b² + c² + 2(ab + bc + ca)
So,
a² + b² + c² = a² + b² + c² + 2(ab + bc + ca)
➡ m² = a² + b² + c² + 2 (n)
➡ -(a² + b² + c²) = -m² + 2n
➡ a² + b² + c² = m² + 2n
Similar questions