a^2(b+c) + b^2(c-a)+c^2(a-b)
Answers
a2(b-c)+b2(c-a)+c2(a-b)
Final result :
a2b - a2c - ab2 + ac2 + b2c - bc2
Reformatting the input :
Changes made to your input should not affect the solution:
(1): "c2" was replaced by "c^2". 2 more similar replacement(s).
Step by step solution :
Step 1 :
Equation at the end of step 1 :
(((a2)•(b-c))+((b2)•(c-a)))+c2•(a-b)
Step 2 :
Equation at the end of step 2 :
(((a2)•(b-c))+b2•(c-a))+c2•(a-b)
Step 3 :
Equation at the end of step 3 :
(a2•(b-c)+b2•(c-a))+c2•(a-b)
Step 4 :
Trying to factor by pulling out :
4.1 Factoring: a2b-a2c-ab2+ac2+b2c-bc2
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: b2c-ab2
Group 2: a2b-a2c
Group 3: ac2-bc2
Pull out from each group separately :
Group 1: (a-c) • (-b2)
Group 2: (b-c) • (a2)
Group 3: (a-b) • (c2)
Looking for common sub-expressions :
Group 1: (a-c) • (-b2)
Group 3: (a-b) • (c2)
Group 2: (b-c) • (a2)
I M NOT CLEAR WHAT TO DO . I M FACTORISING IT .
MAY IT HELP
a²(b+c) +b²(c-a)+c²(a-b)
= a²b+a²c+b²c-b²a+c²a-c²b
= a²b-b²a + a²c-c²a b²c-c²b
= ab(a-b)+ac(a-c)+bc(c-a)