Math, asked by shamycool425, 11 months ago

a=2,d=8,Sn=90,find n and an

Answers

Answered by sahaneashwini28
11

Answer:

38

AP=2,10,18,26,34.....

Step-by-step explanation:

Sn=n/2 [2a +[n-1]d]

90=n/2[4+[n-1]8]

90=n/2[4+8n-8]

90=n/2[-4+8n]

90=n[-2+4n]

90=-2n+4n2

4n2-2n-90=0

after solving this quadratic equation we get,

n=38

Answered by Anonymous
8

\large{givenA=2,D=8,Sn=90}

\large{tofindNandAn}

formula

\large{Sn=n[2a+(n-1)d]/2}

putting values we get

\large{90=n[2(2)+(n-1)(8)/2}

\large{90=n[4+8n-8]2}

\large{180=n[-4+8n]}

\large{180=-4n+8nsq}

then it become a quadratic equation...

\large{8nsq-4n-180=0}

using quadratic formula.....

-b+_√bsq-4ac/2a

values

b=-4

a=8

c=-180

then

\large{4+_√(-4)sq-4(8)(-180)/2(8)}

\large{4+_√16+5760/16}

\large{4+_√5776/16}

\large{4+_76/16}

two zeroes

\large{4+76/16}

\large{4-76/16}

\large{80/16}

\large{-72/16}

\large{n=5}

cause the value of n cannot be negative

then

\large{theAnthterm}

\large{An=a+(n-1)d}

\large{An=2+(n-1)8}

\large{An=2+8n-8}

\large{An=8n-6}

Similar questions