Physics, asked by sanjitya998gmailcom, 4 months ago

A 200.0V battery is connected across two capacitor of capacitance 4.0 micro fried and 6.0 micro fried in parallel calculate the energy store in each capacitor and energy supplied by the store.​

Answers

Answered by kikibuji
7
  • Capacitance, C_1 = 4 μF

  • Capacitance, C_2 = 6 μF

  • Potential difference of the battery, V = 200 v

Since the capacitors are connected in parallel, the potential difference is same for both capacitors.

Energy stored in the capacitor, E = CV²/2

Consider for 4 μF capacitor

E =  \frac{1}{2} C_1 {V}^{2}  \\  \\  =  \frac{1}{2}  \times 4 \times  {(200)}^{2}  \\  \\  =  \frac{1}{2}  \times 4 \times 200 \times 200 \\  \\  = 4 \times 200 \times 100 \\  \\ E = 80000 \: \mu F \\  \\ E = 80 \times 1000 \times   {10}^{ - 6}  \: F \\  \\  = 80 \times  {10}^{3}  \times  {10}^{ - 6}  \\  \\  = 80 \times  {10}^{(3 - 6)}  \\  \\  = 80 \times  {10}^{ - 3}  \\  \\ E = 80 \: mF

Energy stored in the 4 μF capacitor is 80 mF.

Consider for 6 μF capacitor

 E =  \frac{1}{2} C_2 {V}^{2}  \\  \\  =  \frac{1}{2}  \times 6 \times  {(200)}^{2}  \\  \\  =  \frac{1}{2}  \times 6 \times 200 \times 200 \\  \\  = 6 \times 200 \times 100 \\  \\ E = 120000 \: \mu F \\  \\ E = 120 \times 1000 \times   {10}^{ - 6}  \: F \\  \\  = 120 \times  {10}^{3}  \times  {10}^{ - 6}  \\  \\  = 120 \times  {10}^{(3 - 6)}  \\  \\  = 120 \times  {10}^{ - 3}  \\  \\ E = 120 \: mF

Energy stored in the 6 μF capacitor is 120 mF.

Total energy stored is equal o the sum of the individual energies of capacitors.

E = 80 + 120

E = 200 mF

ALTERNATIVE METHOD FOR TOTAL ENERGY:

Since the capacitors are connected in series, the effective capacitance is equal to the sum of individual capacitances.

C_{eff} = C_1 + C_2 \\  \\  = 4 + 6 \\  \\ C_{eff} = 10 \: \mu F

The net capacitance is 10 μF.

Total energy stored,

E =  \frac{1}{2}  \times C_{eff} \times  {V}^{2}  \\  \\  =  \frac{1}{2}  \times 10 \times  {(200)}^{2}  \\  \\  =  \frac{1}{2}  \times 10 \times 200 \times 200 \\  \\  = 10 \times 200 \times 100 \\  \\ E = 200000 \: \mu F \\  \\  = 200 \times 1000 \times  {10}^{ - 6 } F \\  \\  = 200 \times  {10}^{3}  \times  {10}^{ - 6}  \\  \\  = 200 \times  {10}^{ - 3}  \\  \\ E = 200 \: mF

The total energy stored is 200 mF.

Similar questions