Hindi, asked by deepakyadav00721, 9 months ago

a=√3+1/√3-1 and b=√3-1/√3+1 then the value of a2+ab+b2/a2-ab+b2 =?

Answers

Answered by BrainlyPopularman
85

{ \bold{ \underline{Given} : -  }} \\  \\ a =  \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  \:  \: and \:  \: b =  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  \\  \\ \\  { \bold{ \underline{ To  \:  \: find } : -  }} \\  \\  \:  \:  \: \:  \:  .  \:   \: \:  Value  \:  \: of \:  \:   {a}^{2}  + ab +  {b}^{2}  \\   \:  \:  \:  \:  \: . \:  \:  \: Value  \:  \: of  \:  \: {a}^{2}  - ab +  {b}^{2}  \\  \\ { \bold{ \underline{solution} : -  }} \\  \\  =  > First \:  \:  we  \:  \: have  \:  \: to \:  \:  find  \:  \: the \:  \: values \:  \: of \:  \:  {a}^{2}  \:  \: and \:  \:  {b}^{2}  \\  \\  =  > a =  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  \\  \\  =  >  {a}^{2}  =  \frac{ {( \sqrt{3} + 1) }^{2} }{ {( \sqrt{3}  - 1)}^{2} }  \\  \\  =  >  { a}^{2}  =  \frac{3 + 1 + 2 \sqrt{3} }{3 + 1  - 2 \sqrt{3} }  \\  \\  =  >  {a}^{2}  =  \frac{4 + 2 \sqrt{3} }{4 - 2 \sqrt{3} }  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  =  >  {a}^{2}  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\   = >  {a}^{2}  =  \frac{ {(2 +  \sqrt{ 3}) }^{2} }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  =  >  {a}^{2}  = 4 + 3 + 4 \sqrt{3}  = 7 + 4 \sqrt{3}  \\  \\  \:  \: . \:  \: now \:  -  \\  \\ =  >  b =   \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  \\  \\  =  >  {b}^{2}  =  \frac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3} + 1) }^{2} }  \\  \\  =  >  {b}^{2}  =  \frac{3 + 1 - 2 \sqrt{3} }{3 + 1 + 2 \sqrt{3} }  \\  \\  =  >  {b}^{2}  =  \frac{4 - 2 \sqrt{3} }{4 + 2 \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{ 2+  \sqrt{3} }  \\  \\ =   >  {b}^{2}  =  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }   \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  =  >  {b}^{2}  =  \frac{ {(2 -  \sqrt{3}) }^{2} }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  >  {b}^{2}  = 4 + 3 - 4 \sqrt{3}  = 7 - 4 \sqrt{3}   \\ \\  \\  \:  \:  \:  \: . \:  \:  \:{ \bold{ ab = 1 }}\\  \\  \\  \:  \:  \: \:   . \:  \: so \:  \: that -  \\  \\ (1)  \:  \: {a}^{2}  + ab +  {b}^{2}  = 7 + 4 \sqrt{3}  + 1 + 7 - 4 \sqrt{3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:   \:   = 14 + 1  = 15\\  \\ (2)  \:  \:  \: {a}^{2}  - ab +  {b}^{2}  = 7 + 4 \sqrt{3}  - 1 + 7 - 4 \sqrt{3}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 14  - 1 = 13

Similar questions